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Abstract. Multiscale periodic homogenization is extended to an Orlicz–Sobolev setting.
It is shown by the reiteraded periodic two-scale convergence method that the sequence of
minimizers of a class of highly oscillatory minimizations problems involving convex functionals,
converges to the minimizers of a homogenized problem with a suitable convex function.
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1. INTRODUCTION

The method of two-scale convergence introduced by Nguetseng [35] and later developed
by Allaire [2] have been widely adopted in homogenization of PDEs in classical Sobolev
spaces neglecting materials where microstructure cannot be conveniently captured by
modeling exclusively by means of those spaces. Recently in [21] some of the above
methods were extended to Orlicz–Sobolev setting. On the other hand, an increasing
number of works in homogenization and dimension reduction (see [26–32,38]), among
the others) are devoted to deal with this more general setting. We also refer to
[42–44] for two scale homogenization in variable exponent spaces, which also evidence
Lavrentieff phenomena.

In order to model multiscale phenomena, i.e., to provide homogenization results
closer to reality, more than two-scales should be considered. Indeed the aim of this work
is to show that the two-scale convergence method can be extended and generalized to
tackle reiterated homogenization problems in the Orlicz–Sobolev setting.
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In details, we intend to study the asymptotic behaviour as ε→ 0+ of the sequence
of solutions of the problem

min
{
Fε(v) : v ∈W 1

0L
B (Ω)

}
(1.1)

where, for each ε > 0, the functional Fε is defined on W 1
0L

B(Ω) by

Fε(v) =
∫

Ω

f
(x
ε
,
x

ε2 , Dv(x)
)
dx, v ∈W 1

0L
B(Ω), (1.2)

Ω being a bounded open set in RNx , n,N ∈ N, D denoting the gradient operator in Ω
with respect to x and the function f : RNy ×RNz ×RnN → [0,+∞) being an integrand,
that satisfies the following hypotheses:

(H1) for all λ ∈ RN , f (·, z, λ) is measurable for all z ∈ RN and f (y, ·, λ) is continuous
for almost all y ∈ RN ;

(H2) f (y, z, ·) is strictly convex for a.e. y ∈ RNy and all z ∈ RNz ;
(H3) for each (k, k′) ∈ Z2N we have f (y + k, z + k′, λ) = f (y, z, λ) for all

(z, λ) ∈ RNz × RN and a.e. y ∈ RNy ;
(H4) there exist two constants c1, c2 > 0 such that:

c1B (|λ|) ≤ f (y, z, λ) ≤ c2 (1 +B (|λ|))

for all λ ∈ RnNand for a.e. y ∈ RNy and all z ∈ RNz .

We observe that problems of the type (1.1) have been studied by many authors in
many contexts (see, among the others, [2–8,10,11, 17,18, 20,22, 34,40]. But in all the
above papers the two-scale approach or other methods (see in particular unfolding)
have been always considered in classical Sobolev setting. The novelty here is the
multiscale approach beyond classical Sobolev spaces. For the sake of exposition we
consider the scales ε and ε2, but more general choices are possible, as in [3]. We also
refer to [24] for extensions of the present results to higher order Orlicz–Sobolev spaces.

In particular we introduce the following setting.
Let B an N-function and B̃ its conjugate both verifying the 42 (in words: delta-2)

condition (see (2.1) below), let Ω be a bounded open set in RNx , Y = Z = (− 1
2 ,

1
2 )N ,

N ∈ N and ε any sequence of positive numbers converging to 0. Assume that
(uε)ε is bounded in W 1LB(Ω). Then, there exist not relabelled subsequences
ε, (uε)ε, u0 ∈W 1LB(Ω),

(u1, u2) ∈ L1 (Ω;W 1
#L

B (Y )
)
× L1 (Ω;L1

per

(
Y ;W 1

#L
B(Z)

))

such that: uε ⇀ u0 in W 1LB(Ω) weakly, and
∫

Ω

Dxi
uεϕ

(
x,
x

ε
,
x

ε2

)
dx→

∫∫∫

Ω×Y×Z

(Dxi
u0 +Dyi

u1 +Dzi
u2)ϕ (x, y, z) dxdydz

as ε→ 0,
(1.3)
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1 ≤ i ≤ N , and for all ϕ ∈ LB̃ (Ω; Cper (Y × Z)), where Dxi
, Dyi

and Dzi
denote the

distributional derivatives with respect to the variables xi.yi, zi, (also denoted by ∂
∂xi

,
∂
∂yi

and ∂
∂zi

, respectively). (See Section 2 for detailed notations and Definition 2.4 and
Proposition 2.12 for rigorous results.)

Next, we define, following the same type of notation adopted in [21], (and referring
to subsection 2.1 for notation, norms and properties of functions spaces below) the space

F1
0L

B = W 1
0L

B(Ω)× LBDy
(Ω;W 1

#L
B(Y ))× LBDz

(Ω;L1
per(Y ;W 1

#L
B(Z))), (1.4)

where

LBDy
(Ω;W 1

#L
B(Y )) =

{
u ∈ L1(Ω;W 1

#L
B(Y )) : Dyu ∈ LBper(Ω× Y )N

}
,

LBDz
(Ω;L1

per(Y ;W 1
#L

B(Z))) (1.5)
=
{
u ∈ L1(Ω;L1

per(Y ;W 1
#L

B(Z))) : Dzu ∈ LBper(Ω× Y × Z)N
}
.

Observe that Dx, Dy and Dz denote the vector of distributional derivatives with
respect to x ≡ (x1, . . . , xN ), y ≡ (y!, . . . , yN ) and z ≡ (z1, . . . , zN ), respectively.

We equip F1
0L

B with the norm

‖u‖F1
0L

B = ‖Du0‖B,Ω +‖Dyu1‖B,Ω×Y +‖Dzu2‖B,Ω×Y×Z , u = (u0, u1, u2) ∈ F1
0L

B ,

which makes it a Banach space.
Finally, for v = (v0, v1, v2) ∈ F1

0L
B, denote by Dv the sum Dv0 + Dyv1 + Dzv2

and define the functional F : F1
0L

B → R+ by

F (v) =
∫∫∫

Ω×Y×Z

f(·,Dv)dxdydz. (1.6)

With the tool of multiscale convergence at hand in the Orlicz–Sobolev setting,
we prove the following result.
Theorem 1.1. Let Ω be a bounded open set in RNx and let f : RNy ×RNz ×RN → [0,+∞)
be an integrand satisfying (H1)–(H4). For each ε > 0, let uε be the unique solution of
(1.1), then as ε→ 0,
(a) uε ⇀ u0 weakly in W 1

0L
B(Ω);

(b) Duε ⇀ Du = Du0 +Dyu1 +Dzu2 weakly reiteratively two-scale in LB(Ω)N (i.e. in
the sense of (1.3)), where u = (u0, u1, u2) ∈ F1

0L
B is the unique solution of the

minimization problem
F (u) = min

v∈F1
0L

B
F (v), (1.7)

where F1
0L

B and F are as in (1.4) and (1.6), respectively.
The paper is organized as follows, Section 2 deals with notations, preliminary results

on Orlicz–Sobolev spaces, introduction of suitable function spaces to deal with multiple
scales homogenization, and compactness result for reiterated two-scale convergence,
while Section 3 contains the main results devoted to the proof of Theorem 1.1, together
with Corollary 3.6 which allows to recast the main result in the framework of Γ
convergence (see also [23] for the single scale case).
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2. NOTATION AND PRELIMINARIES

In what follows, X and V denote a locally compact space and a Banach space,
respectively, and C(X;V ) stands for the space of continuous functions from X into
V , and Cb(X;V ) stands for those functions in C(X;F ) that are bounded. The space
Cb(X;V ) is endowed with the supremum norm ‖u‖∞ = supx∈X ‖u(x)‖, where ‖ · ‖
denotes the norm in V , (in particular, given an open set A ⊂ RN by Cb(A) we
denote the space of real valued continuous and bounded functions defined in A).
Likewise the spaces Lp(X;V ) and Lploc(X;V ) (X provided with a positive Radon
measure) are denoted by Lp(X) and Lploc(X), respectively, when V = R (we refer to
[12,13,16] for integration theory).

In the sequel we denote by Y and Z two identical copies of the cube (− 1
2 ,

1
2 )N .

In order to enlighten the space variable under consideration we will adopt the
notation RNx ,RNy , or RNz to indicate, where x, y or z belong to.

The family of open subsets in RNx will be denoted by A(RNx ).
For any subset E of Rm, m ∈ N, by E, we denote its closure in the relative topology.
For every x ∈ RN we denote by [x] its integer part, namely the vector in ZN , which

has as a component the integer parts of the components of x.
By LN we denote the Lebesgue measure in RN .

2.1. ORLICZ–SOBOLEV SPACES

Let B : [0,+∞[→ [0,+∞[ be an N-function [1], i.e., B is continuous, convex, with
B(t) > 0 for t > 0, B(t)

t → 0 as t → 0, and B(t)
t → ∞ as t → ∞. Equivalently, B is

of the form B(t) =
∫ t

0 b(τ)dτ , where b : [0,+∞[→ [0,+∞[ is non decreasing, right
continuous, with b(0) = 0, b(t) > 0 if t > 0 and b(t)→ +∞ if t→ +∞.

We denote by B̃ the complementary N-function of B defined by

B̃(t) = sup
s≥0
{st−B(s), t ≥ 0} .

It follows that
tb(t)
B(t) ≥ 1 (or > if b is strictly increasing),

B̃(b(t)) ≤ tb(t) ≤ B(2t) for all t > 0.
An N-function B is of class 42 at ∞ (denoted B ∈ 42) if there are α > 0 and t0 ≥ 0
such that

B(2t) ≤ αB(t) (2.1)
for all t ≥ t0.

In what follows, B and B̃ are conjugates N-functions satisfying the 42 condition
and c refers to a constant. Let Ω be a bounded open set in RN (N ∈ N). The Orlicz
space

LB(Ω) =



u : Ω→ R;u is measurable, lim

δ→0+

∫

Ω

B(δ |u(x)|)dx = 0
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is a Banach space with respect to the Luxemburg norm:

‖u‖B,Ω = inf
{
k > 0 :

∫

Ω

B

( |u(x)|
k

)
dx ≤ 1

}
< +∞.

It follows that: D(Ω) is dense in LB (Ω) , LB(Ω) is separable and reflexive, the dual
of LB(Ω) is identified with LB̃ (Ω), and the norm on LB̃(Ω) is equivalent to ‖·‖

B̃,Ω .

We will denote the norm of elements in LB(Ω), both by ‖ · ‖LB(Ω) and with ‖ · ‖B,Ω,
the latter symbol being useful when we want emphasize the domain Ω.

Furthermore, it is also convenient to recall that:

(i)
∣∣ ∫

Ω u(x)v(x)dx
∣∣ ≤ 2 ‖u‖B,Ω ‖v‖B̃,Ω for u ∈ LB(Ω) and v ∈ LB̃(Ω),

(ii) given v ∈ LB̃(Ω) the linear functional Lv on LB(Ω) defined by

Lv(u) =
∫

Ω

u(x)v(x)dx, (u ∈ LB(Ω))

belongs to the dual
[
LB(Ω)

]′ = LB̃(Ω) with ‖v‖
B̃,Ω ≤ ‖Lv‖[LB(Ω)]′ ≤ 2 ‖v‖

B̃,Ω,
(iii) the property limt→+∞

B(t)
t = +∞ implies LB(Ω) ⊂ L1(Ω) ⊂ L1

loc(Ω) ⊂ D′ (Ω),
each embedding being continuous.

For the sake of notations, given any d ∈ N, when u : Ω → Rd, such that each
component (ui), of u, lies in LB(Ω) we will denote the norm of u with the symbol

‖u‖LB(Ω)d :=
d∑

i=1
‖ui‖B,Ω.

Analogously one can define the Orlicz–Sobolev functional space as follows:

W 1LB(Ω) =
{
u ∈ LB(Ω) : ∂u

∂xi
∈ LB(Ω), 1 ≤ i ≤ d

}
,

where derivatives are taken in the distributional sense on Ω. Endowed with the norm

‖u‖W 1LB(Ω) = ‖u‖B,Ω +
d∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
B,Ω

, u ∈W 1LB(Ω),

W 1LB(Ω) is a reflexive Banach space. We denote by W 1
0L

B(Ω), the closure of D(Ω)
in W 1LB(Ω) and the semi-norm

u→ ‖u‖W 1
0L

B(Ω) = ‖Du‖B,Ω =
d∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
B,Ω

is a norm on W 1
0L

B (Ω) equivalent to ‖·‖W 1LB(Ω) .
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By W 1
#L

B(Y ), we denote the space of functions u ∈ W 1LB(Y ) such that∫
Y
u(y)dy = 0. It is endowed with the gradient norm. Given a function space S

defined in Y , Z or Y × Z, the subscript Sper means that the functions are periodic in
Y , Z or Y ×Z, as it will be clear from the context. In particular Cper(Y ×Z) denotes the
space of periodic functions in C(RNy ×RNz ), i.e. that verify w(y+k, z+h) = w(y, z) for
(y, z) ∈ RN ×RN and (k, h) ∈ ZN ×ZN . C∞per(Y ×Z) = Cper(Y ×Z)∩C∞(RNy ×RN ),
and Lpper(Y × Z) is the space of Y × Z-periodic functions in Lploc(RNy × RNz ).

2.2. FUNDAMENTALS OF REITERATED HOMOGENIZATION
IN ORLICZ SPACES

This subsection is devoted to show some results which are useful for an explicit
construction of reiterated multiscale convergence in the Orlicz setting. Indeed all the
definitions are given starting from spaces of regular functions, then several norms are
introduced together with proofs of functions spaces’ properties. On the other hand
we will not present neither arguments which are very similar to the ones used to
deal with standard two scale convergence in the Orlicz setting, nor those related
to reiterated two-scale convergence in the standard Sobolev setting (for the latter we
refer to [25, Sections 2 and 4]).

We start by defining rigorously the traces of the form u
(
x, xε ,

x
ε2

)
, x ∈ Ω, ε > 0.

We will consider several cases, according to the regularity of u.
Case 1. u ∈ C

(
Ω× RNy × RNz

)

We define
uε (x) := u

(
x,
x

ε
,
x

ε2

)
.

Obviously uε ∈ C (Ω). We define the trace operator of order ε > 0, (tε) by

tε : u ∈ C
(
Ω× RNy × RNz

)
−→ uε ∈ C(Ω). (2.2)

It results that the operator tε in (2.2) is linear and continuous.
Case 2. u ∈ C

(
Ω; Cb

(
RNy × RNz

))
.

C
(
Ω; Cb

(
RNy × RNz

))
⊂ C

(
Ω; C

(
RNy × RNz

)) ∼= C
(
Ω× RNy × RNz

)
.

Then, we can consider C
(
Ω; Cb

(
RNy × RNz

))
as a subspace of C

(
Ω× RNy × RNz

)
. Since

Ω is compact in RNx , then uε ∈ Cb(Ω) and the above operator can be considered from
C
(
Ω; Cb

(
RNy × RNz

))
to Cb(Ω), as linear and continuous.

Case 3. u ∈ LB(Ω;V ) where V is a closed vector subspace of Cb
(
RNy × RNz

)
.

Recall that u ∈ LB(Ω;V ) means the function x→ ‖u(x)‖∞, from Ω into R, belongs
to LB(Ω) and

‖u‖LB(Ω;Cb(RN
y ×RN

z )) = inf



k > 0 :

∫

Ω

B

(‖u(x)‖∞
k

)
dx ≤ 1



 < +∞.
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Let u ∈ C
(
Ω;Cb

(
RNy × RNz

))
, then

|uε(x)| =
∣∣∣u
(
x,
x

ε
,
x

ε2

)∣∣∣ ≤ ‖u(x)‖∞ .

As N-functions are non decreasing we deduce that

B

( |uε(x)|
k

)
≤ B

(‖u(x)‖∞
k

)
, for all k > 0 and all x ∈ Ω.

Hence we get ∫

Ω

B

( |uε(x)|
k

)
dx ≤

∫

Ω

B
(‖u(x)‖∞

k

)
dx,

thus
∫

ΩB
(
‖u(x)‖∞

k

)
dx ≤ 1 implies

∫
ΩB

(
|uε(x)|
k

)
dx ≤ 1, that is,

‖uε‖LB(Ω) ≤ ‖u‖LB(Ω;Cb(RN
y ×RN

z )) .

Therefore the trace operator u → uε from C
(
Ω;V

)
into LB(Ω), extends by density

and continuity to a unique operator from LB(Ω; Cb(V )).
It will be still denoted by

tε : u→ uε

and it verifies
‖uε‖LB(Ω) ≤ ‖u‖LB(Ω;Cb(RN

y ×RN
z )) for all u ∈ LB (Ω; (V )) . (2.3)

In order to deal with reiterated multiscale convergence we need to have good definition
for the measurability of test functions, so we should ensure measurability for the trace
of elements u ∈ L∞

(
RNy ; Cb

(
RNz
))

and u ∈ C
(
Ω;L∞

(
RNy ; Cb

(
RNz
)))

, but we omit
these proofs, referring to [25, Section 2].

LetM : Cper (Y × Z)→ R be the mean value functional (or equivalently “averaging
operator”) defined as

u→M(u) :=
∫∫

Y×Z

u (x, y) dxdy. (2.4)

It results that
(i) M is nonnegative, i.e. M(u) ≥ 0 for all u ∈ Cper(Y × Z), u ≥ 0;
(ii) M is continuous on Cper (Y × Z) (for the sup norm);
(iii) M (1) = 1;
(iv) M is translation invariant.

In the same spirit of [25], for the given N-function B, we define ΞB
(
RNy ; Cb

(
RNz
))

(or simply ΞB
(
RNy ; Cb

)
) the following space

ΞB
(
RNy ; Cb

)
:=
{
u ∈ LBloc(RNx ;Cb(RNz )) : for every U ∈ A(RNx ) :

sup
0<ε≤1

inf
{
k > 0:

∫

U

B

(∥∥u
(
x
ε , ·
)∥∥
L∞

k

)
dx ≤ 1

}
<∞

}
.

(2.5)
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Hence putting

‖u‖ΞB(RN
y ;Cb(RN

z )) = sup
0<ε≤1

inf
{
k > 0:

∫

BN (0,1)

B

(‖u
(
x
ε , ·
)
‖L∞

k

)
dx ≤ 1

}
, (2.6)

with BN (0, 1) being the unit ball of RNx centered at the origin, we have a norm on
ΞB
(
RNy ; Cb

(
RNz
))

which makes it a Banach space.
We also denote by XBper

(
RNy ; Cb

)
the closure of Cper (Y × Z) in ΞB

(
RNy ; Cb

)
.

Recall that LBper (Y × Z) denotes the space of functions in LBloc(RNy × RNz ) which
are Y × Z-periodic.

Clearly ‖·‖B,Y×Z is a norm on LBper (Y × Z), namely it suffices to consider the LB
norm just on the unit period.

Let u ∈ Cper (Y × Z), we have

∣∣∣∣∣∣∣

∫

BN (0,1)

u
(x
ε
,
x

ε2

)
dx

∣∣∣∣∣∣∣
≤

∫

BN (0,1)

∥∥∥u
(x
ε
, ·
)∥∥∥
∞
dx ≤ 2 ‖1‖

B̃,BN (0,1) ‖u‖ΞB(RN
y ;Cb(RN

z )) .

The following result, useful to prove estimates which involve test functions on
oscillating arguments (see for instance Proposition 2.7), is a preliminary instrument
which aims at comparing the LB norm in Y × Z with the one in (2.6).

Lemma 2.1. There exists C ∈ R+ such that ‖uε‖B,BN (0,1) ≤ C ‖u‖B,Y×Z for every
0 < ε ≤ 1 and u ∈ XBper(RNy ; Cb).

Proof. Let ε > 0. We start observing that we can always find a compact set H ⊂ RN
(independent on ε) such that

BN (0, 1) ⊆
⋃

k∈Zε2

ε2(k + Z) ⊆ H,

where

Zε2 =
{
k ∈ ZN : ε2(k + Z) ∩BN (0, 1) 6= ∅

}
.

Define also

BN,ε2 := int


 ⋃

k∈Zε2

ε2(k + Z)


 .
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Then BN (0, 1) ⊂ BN,ε2 . Thus
∫

BN (0,1)

B
(∣∣∣u

(x
ε
,
x

ε2

)∣∣∣
)
dx ≤

∫

⋃
k∈Z

ε2
ε2(k+Z)

B
(∣∣∣u

(x
ε
,
x

ε2

)∣∣∣
)
dx

=
n(ε2)∑

i=1
ε2N

∫

Z

B

(∣∣∣∣u
(
ε2ki + ε2z

ε
,
ε2ki + ε2z

ε2

)∣∣∣∣
)
dz

=
n(ε2)∑

i=1
ε2N

∫

Z

B (|u (εki + εz, z)|) dz,

where we have used the change of variables x = ε2(ki + z), in each cube ε2(ki + Z),
the periodicity of u in the second variable, the fact that we can cover BN (0, 1) with
a finite number of cubes ε2(ki + Z), depending on ε2 and denoted by n(ε2).

Since
[
x
ε2

]
= ki and [z] = 0 for every x ∈ ε2(ki + Z) and z ∈ Z and

LN (ε2(ki + Z)) = ε2N , we can write

∫

BN (0,1)

B
(∣∣∣u

(x
ε
,
x

ε2

)∣∣∣
)
dx ≤

n(ε2)∑

i=1
ε2N

∫

Z

B
(∣∣∣u

(
ε
[ x
ε2

]
+ εz, z

)∣∣∣
)
dz

≤
n(ε2)∑

i=1

∫

ε2(ki+Z)

∫

Z

B
(∣∣∣u

(
ε
[ x
ε2

]
+ εz, z

)∣∣∣
)
dzdx

≤
∫∫

BN,ε2×Z

B
(∣∣∣u

(
ε
[ x
ε2

]
+ εz, z

)∣∣∣
)
dzdx

=
∫∫

BN,ε2×Z

B
(∣∣∣u

(x
ε
, z
)∣∣∣
)
dxdz,

where in the third line above we have used the fact that x
ε = ε

[
x
ε2

]
+ εz.

Now, making again another change of variable of the same type, i.e. y + hi = x/ε,
after a covering of BN,ε2 made by

⋃
hi∈Zε

ε(hi + Y ), where

Zε =
{
h ∈ ZN : ε(h+ Y ) ∩BN,ε2 6= ∅

}
,

we have
∫∫

BN,ε2×Z

B
(∣∣∣u

(x
ε
, z
)∣∣∣
)
dxdz ≤

n(ε)∑

i=1
εN

∫∫

hi+Y×Z

B

(∣∣∣∣u
(
εhi + εy

ε
, z

)∣∣∣∣
)
dydz

≤
n(ε)∑

i=1
εN
∫∫

Y×Z

B (|u(y, z)|) dydz.
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Up to another choice of 0 < ε0 ≤ 1, we can observe that, given ε < ε0,
BN (0, 1) ⊂ BN,ε2 and also BN (0, 1) ⊂ ⋃n(ε)

i=1 ε(hi + Y ). On the other hand there
is a compact H, which contains

⋃n(ε)
i=1 ε(hi + Y ) and whose measure satisfies the

following inequality LN (H) ≥∑n(ε)
i=1 ε

N .
Essentially repeating the same above computations, we have for every k ∈ R+, and

0 < ε ≤ ε0 and u ∈ LBper(Y × Z):

∫

BN (0,1)

B

(∣∣∣∣∣
u
(
x
ε ,

x
ε2

)

k

∣∣∣∣∣

)
dx ≤ εN

n(ε)∑

i=1

∫∫

Y×Z

B

(∣∣∣∣
u (y, z)
k

∣∣∣∣
)
dydz.

For k = ‖u‖B,Y×Z using the convexity of B, and the fact that B(0) = 0, we get

∫

BN (0,1)

B

(∣∣∣∣∣
u
(
x
ε ,

x
ε2

)

(1 + LN (H)) ‖u‖B,Y×Z

∣∣∣∣∣

)
dx

≤ 1
(1 + LN (H))

∫

BN (0,1)

B

(∣∣∣∣∣
u
(
x
ε ,

x
ε2

)

‖u‖B,Y×Z

∣∣∣∣∣

)
dx

≤ εN
n(ε)∑

i=1

∫∫

Y×Z

B

(∣∣∣∣∣
u (y, z)
‖u‖B,Y×Z

∣∣∣∣∣

)
dydz × 1

(1 + LN (H))

≤ n (ε) εN
(1 + LN (H))

∫∫

Y×Z

B

(∣∣∣∣∣
u (y, z)
‖u‖B,Y×Z

∣∣∣∣∣

)
dydz

≤ LN (H)
(1 + LN (H))

∫∫

Y×Z

B

(∣∣∣∣∣
u(y, z)
‖u‖B,Y×Z

∣∣∣∣∣

)
dydz < 1,

where the non decreasing behaviour of B has been exploited. Therefore, by the
definition of norm in BN (0, 1),

‖uε‖B,BN (0,1) ≤
(
1 + LN (H)

)
‖u‖B,Y×Z .

Lemma 2.2. The mean value operator M defined on Cper (Y × Z) by (2.4) can be
extended by continuity to a unique linear and continuous functional denoted in the
same way from XBper

(
RNy ; Cb

)
to R such that:

– M is non negative, i.e. for all u ∈ XBper
(
RNy ; Cb

)
, u ≥ 0 =⇒M(u) ≥ 0,

– M is translation invariant.

Proof. It is a consequence of (2.5) and the definition of XBper
(
RNy ; Cb

)
, of the density

of Cper (Y × Z) in XBper
(
RNy ; Cb

)
, of the continuity of M on XBper

(
RNy ; Cb

)
and of the

continuity of v → vε from XBper
(
RNy ; Cb

)
to LB(Ω) (see (2.3)).
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Now we endow XBper
(
RNy ; Cb

)
with another norm. Indeed we define XBper

(
RNy × RNz

)

the closure of Cper (Y × Z) in LBloc
(
RNy × RNz

)
with the norm

‖u‖ΞB := sup
0<ε≤1

∥∥∥u
(x
ε
,
y

ε

)∥∥∥
B,2BN

.

Via Riemann–Lebesgue lemma the above norm is equivalent to ‖u‖LB(Y×Z), thus
in the sequel we will consider this one.

For the sake of completeness, we state the following result which proves that the
latter norm is controlled by the one defined in (2.6), thus together with Lemma 2.1,
it provides the eqivalence among the introduced norms in XBper(RNy ; Cb). The proof is
postponed to the Appendix.

Proposition 2.3. It results that

XBper
(
RNy ; Cb

)
⊂ LBper (Y × Z) = XBper

(
RNy × RNz

)

and ‖u‖B,Y×Z ≤ c ‖u‖ΞB(RN
y ;Cb(RN

z )) for all u ∈ XBper
(
RNy ; Cb

)
.

2.3. REITERATED TWO-SCALE CONVERGENCE IN ORLICZ SPACES

Generalizing definitions in [21,25,39] we introduce

LBper(Ω× Y × Z) =
{
u ∈ LBloc(Ω× RNy × RNz ) : for a.e x ∈ Ω, u (x, ·, ·) ∈ LBper (Y × Z)

and
∫∫∫

Ω×Z

B (|u (x, y, z)|) dxdydz <∞
}
.

We are in position to define reiterated two-scale convergence:

Definition 2.4. A sequence of functions (uε)ε ⊆ LB(Ω) is said to be:

– weakly reiteratively two-scale convergent in LB(Ω) to a function u0 ∈
LBper(Ω× Y × Z) if

∫

Ω

uεf
εdx→

∫∫∫

Ω×Y×Z

u0fdxdydz, for all f ∈ LB̃ (Ω; Cper (Y × Z)) , (2.7)

as ε→ 0,
– strongly reiteratively two-scale convergent in LB(Ω) to u0 ∈ LBper (Ω× Y × Z) if
for η > 0 and f ∈ LB (Ω; Cper (Y × Z)) verifying ‖u0 − f‖B,Ω×Y×Z ≤ η

2 there
exists ρ > 0 such that ‖uε − fε‖B,Ω ≤ η for all 0 < ε ≤ ρ.

When (2.7) happens we denote it by “uε ⇀ u0 in LB (Ω)− weakly reiteratively
two-scale” and we will say that u0 is the weak reiterated two-scale limit in LB (Ω) of
the sequence (uε)ε .
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Remark 2.5. The above definition extends in a canonical way, arguing in components,
to vector valued functions.

Lemma 2.6. If u ∈ LB (Ω; Cper (Y × Z)), then uε ⇀u in LB (Ω) weakly reiteratively
two-scale, and we have lim

ε→0
‖uε‖B,Ω = ‖u‖B,Ω×Y×Z .

Proof. Let u ∈ LB(Ω; Cper(Y × Z)) and f ∈ LB̃(Ω; Cper(Y × Z)), then uf ∈
L1 (Ω; Cper (Y × Z)) and

lim
ε→0

∫

Ω

uεfεdx =
∫∫∫

Ω×Y×Z

ufdxdydz.

Similarly, for all δ > 0, B
(∣∣u
δ

∣∣) ∈ L1 (Ω; Cper (Y × Z)) and the result follows.

We are in position of proving a first sequential compactness result.

Proposition 2.7. Given a bounded sequence (uε)ε ⊂ LB (Ω), one can extract a not
relabelled subsequence such that (uε)ε is weakly reiteratively two-scale convergent
in LB(Ω).

Proof. For ε > 0, set

Lε (ψ) =
∫

Ω

uε(x)ψ
(
x,
x

ε
,
x

ε2

)
dx, ψ ∈ LB̃ (Ω; Cper (Y × Z)) .

Clearly Lε is a linear form and we have

|Lε (ψ)| ≤ 2 ‖uε‖B,Ω ‖ψε‖B̃,Ω ≤ c ‖ψ‖LB̃(Ω;Cper(Y×Z))
, (2.8)

for a constant c independent on ε and ψ. Thus (Lε)ε is bounded in
[
LB̃(Ω; Cper(Y × Z))

]′
.

Since LB̃(Ω; Cper(Y ×Z)) is a separable Banach space, we can extract a not relabelled
subsequence, such that, as ε→ 0,

Lε → L0 in
[
LB̃ (Ω; Cper (Y × Z))

]′
weakly ∗ .

In order to characterize L0 note that (2.8) ensures

|L0 (ψ)| ≤ c ‖ψ‖
B̃,Ω×Y×Z for every ψ ∈ LB̃ (Ω; Cper (Y × Z)) .

Recalling that LB̃(Ω; Cper(Y × Z)) is dense in LB̃per (Ω× Y × Z), L0 can be extended
by continuity to an element of

[
LB̃per(Ω× Y × Z)

]′
≡ LBper (Ω× Y × Z) .
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Thus there exists u0 ∈ LBper (Ω× Y × Z) such that

lim
ε→0

∫

Ω

uε(x)ψ
(
x,
x

ε
,
x

ε2

)
dx =

∫∫∫

Ω×Y×Z

u0 (x, y, z)ψ (x, y, z) dxdydz,

for all ψ ∈ LB̃ (Ω; Cper (Y × Z)) .

The proof of the following results are omitted, since they are consequence of
“standard” density results and are very similar to the (non reiterated) two-scale case
(see for instance [21]).

Proposition 2.8. If a sequence (uε)ε is weakly reiteratively two-scale convergent in
LB(Ω) to u0 ∈ LBper(Ω× Y × Z), then

(i) uε ⇀
∫
Z
u0 (·, ·, z) dz in LB(Ω) weakly two-scale, and

(ii) uε ⇀ ũ0 in LB (Ω)-weakly as ε→ 0 where ũ0(x) =
∫∫

Y×Z u0(x, ·, ·)dydz.

Proposition 2.9. Let

XB,∞per

(
RNy ; Cb

)
:= XBper

(
RNy ; Cb

)
∩ L∞(RNy × RNz ).

If a sequence (uε)ε is weakly reiteratively two-scale convergent in LB(Ω) to
u0 ∈ LBper(Ω× Y × Z) we also have

∫

Ω

uεf
εdx→

∫∫∫

Ω×Y×Z

u0fdxdydz,

for all f ∈ C
(
Ω
)
⊗ XB,∞per

(
RNy ; Cb

)
.

Corollary 2.10. Let v ∈ C
(
Ω;XB,∞per (RNy ; Cb)

)
. Then vε ⇀ v in LB(Ω)-weakly reiter-

atively two-scale as ε→ 0.

Remark 2.11.

(1) If v ∈ LB (Ω; Cper (Y × Z)), then vε → v in LB (Ω)-strongly reiteratively two-scale
as ε→ 0.

(2) If (uε)ε ⊂ LB(Ω) is strongly reiteratively two-scale convergent in LB(Ω)
to u0 ∈ LBper (Ω× Y × Z), then:
(i) uε ⇀ u0 in LB (Ω) weakly reiteratively two-scale as ε→ 0,
(ii) ‖uε‖B,Ω → ‖u0‖B,Ω×Y×Z as ε→ 0.

The following result is crucial to provide a notion of weakly reiterated two-scale
convergence in Orlicz–Sobolev spaces and for the sequential compactness result on
W 1LB(Ω). It extends and presents an alternative proof of [21, Theorem 4.1].

To this end, recall first that L1
per

(
Y ;W 1

#L
B(Z)

)
denotes the space of functions

u ∈ L1
per(Y × Z), such that u(y, ·) ∈W 1

#L
B(Z), for a.e. y ∈ Y .
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Proposition 2.12. Let Ω be a bounded open set in RNx , and (uε)ε bounded in
W 1LB(Ω). There exist a not relabelled subsequence, u0 ∈ W 1LB (Ω), (u1, u2) ∈
L1 (Ω;W 1

#L
B(Y )

)
× L1 (Ω;L1

per

(
Y ;W 1

#L
B(Z)

))
such that:

(i) uε ⇀ u0 weakly reiteratively two-scale in LB (Ω),
(ii) Dxi

uε ⇀ Dxi
u0 + Dyi

u1 + Dzi
u2 weakly reiteratively two-scale in LB(Ω),

1 ≤ i ≤ N ,
as ε→ 0.
Corollary 2.13. If (uε)ε is such that uε ⇀ v0 weakly reiteratively two-scale
in W 1LB(Ω), we have:
(i) uε ⇀

∫
Z
v0 (·, ·, z) dz weakly two-scale in W 1LB(Ω),

(ii) uε ⇀ ṽ0 in W 1LB(Ω)-weakly, where ṽ0(x) =
∫∫

Y×Z v0(x, ·, ·)dydz.
Proof of Proposition 2.12. We recall that

LB (Ω1 × Ω2) ⊂ L1 (Ω1;LB (Ω2)
)
.

Moreover since B satisfies 42, there exist q > p > 1 such that

Lq(Ω) ↪→ LB(Ω) ↪→ Lp(Ω),

(relying on [15, Proposition 2.4] (see also [9, Proposition 3.5]) and a standard argument
based on decreasing rearrangements), where the arrows ↪→ stand for continuous
embedding.

Let (uε)ε be bounded in LB (Ω). Then it is bounded in Lp(Ω) and we have:
(i) uε ⇀ U0 weakly reiteratively two-scale in LB (Ω),
(ii) uε ⇀ u0 in W 1LB(Ω),
(i)’ uε ⇀ U ′0 weakly reiteratively two-scale in Lp(Ω),
(ii)’ uε ⇀ u′0 in W 1,p(Ω).

By classical results (see for instance [3] and [20]), we know that

u′0 = U ′0.

On the other hand, using the embeddings W 1,p(Ω)-weak ↪→ D′(Ω)-weak and
W 1LB(Ω)-weak ↪→ D′(Ω)-weak, we deduce that u′0 = u0 ∈ W 1LB(Ω). Moreover,
since Lp′(Ω) ↪→ LB̃(Ω), it results then Lp′ (Ω; Cper (Y × Z)) ⊂ LB̃ (Ω; Cper (Y × Z)),
thus

U0 = U ′0,

and
U0 = U ′0 = u0 = u′0.

We also have
(iii) Dxi

uε ⇀ w̃ weakly reiteratively two-scale in LB(Ω), 1 ≤ i ≤ N ,
(iii)’ Dxi

uε ⇀ Dxi
u0 + Dyi

u1 + Dzi
u2 weakly reiteratively two-scale in Lp(Ω),

1 ≤ i ≤ N , with (u1, u2) ∈ Lpper
(

Ω;W 1,p
# (Y )

)
×Lp

(
Ω;Lpper

(
Y ;W 1,p

# (Z)
))

(see
[3] and [20]).
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Arguing in components, as done above, we are lead to conclude that

w̃ = Dxi
u0 +Dyi

u1 +Dzi
u2 ∈ LBper (Ω× Y × Z)

and Dxi
u0 ∈ LB(Ω) ⊂ LBper (Ω× Y × Z), as u0 ∈W 1LB(Ω). Therefore

w̃ −Dxi
u0 = Dyi

u1 +Dzi
u2 ∈ LBper(Ω× Y × Z).

By Jensen’s inequality,

B

(∫

Z

|w̃|dz
)
≤
(∫

Z

B(|w̃|)dz
)
,

then
∫∫

Ω×Y

B



∫

Z

|w̃| dz


 dxdy ≤

∫∫

Ω×Y

∫

Z

B (|w̃|) dzdxdy <∞.

Since B satisfies 42,
∫

Z

w̃dz = Dxiu0 +Dyiu1 ∈ LBper (Ω× Y )

with Dxiu0 ∈ LB(Ω) ⊂ LBper(Ω× Y ). Therefore
∫

Z

w̃dz −Dxi
u0 = Dyi

u1 ∈ LBper (Ω× Y ) ⊂ L1 (Ω;LBper(Y )
)
.

On the other hand, u1 ∈ Lpper
(

Ω;W 1,p
# (Y )

)
, i.e. for almost all x,

u1 (x, ·) ∈W 1,p
# (Y ) =

{
v ∈W 1,p

per(Y ) :
∫

Y

vdy = 0
}

and Dyi
u1 (x, ·) ∈ LBper(Y ). In particular u1 (x, ·) ∈ Lpper(Y ) ⊂ L1

per(Y ).
To complete the proof it remains to show that every v ∈ Lp(Y ) withDyiv ∈ LBper(Y )

is in LBper(Y ).
Set u = u−M(u) +M(u), where M is the averaging operator in (2.4). Then, by

Poincaré’s inequality, it results

‖u‖B,Y ≤ ‖u−M(u)‖B,Y + ‖M(u)‖B,Y ≤ c ‖Du‖B,Y + ‖M(u)‖B,Y
≤ c ‖Du‖B,Y + c1

(
1 + ‖u‖L1(Y )

)
<∞,
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the last inequality being consequence of the fact that limt→0B(t) = 0, and there exists
c1 > 0 such that B

(
1
c1

)
< 1. Hence,

∫

Y

B

( |M(u)|
(1 + |M (u)|) c1

)
dy ≤

∫

Y

B

(
1
c1

)
dy ≤ 1,

that is,

‖M(u)‖B,Y ≤ (1 + |M(u)|) c1 =


1 +

∣∣∣∣∣∣

∫

Y

udy

∣∣∣∣∣∣


 c1 ≤ c1

(
1 + ‖u‖L1(Y )

)
.

Thus we can conclude that u1 ∈ L1
per

(
Ω;W 1

#L
B (Y )

)
.

For what concerns u2 we can argue in a similar way. Recall that

w̃ = Dxiu0 +Dyiu1 +Dziu2 ∈ LBper (Ω× Y × Z) , Dxiu0 ∈ LB(Ω),

u1 ∈ L1 (Ω;W 1
#L

B(Y )
)
, u2 ∈ Lp

(
Ω;Lpper

(
Y ;W 1,p

# (Z)
))

.

So

Dzi
u2 = w̃ − (Dxi

u0 +Dyi
u1) ∈ LBper (Ω× Y × Z) ⊂ L1 (Ω;L1

per

(
Y ;LB(Z)

))
,

thus Dzi
u2 (x, y, ·) ∈ LBper(Z) for almost all (x, y) ∈ Ω× RNy .

∫

Z

u2 (x, y, ·) dz = 0

as u2 (x, y, ·) ∈W 1,p
# (Z). Consequently, since

u2(x, y, ·) ∈ Lpper(Z) ⊂ L1
per (Z) , Dzi

u2 (x, y, ·) ∈ LBper (Z) ,

exploiting Poincare’s inequality with the averaging operator M , as done above, it
results that u2 (x, y, ·) ∈W 1

#L
B(Z). Since

Lp(Ω;Lpper(Y ;W 1,p
# (Z))) = Lpper(Ω× Y ;W 1,p

# (Z)) ⊂ L1
per(Ω× Y ;W 1,p

# (Z))
= L1(Ω;L1

per(Y ;W 1,p
# (Z))),

we deduce that u2 ∈ L1
per

(
Ω;L1 (Y ;W 1

#L
B (Z)

))
.

In view of the next applications, we underline that, under the assumptions of the
above proposition, the canonical injection W 1LB(Ω) ↪→ LB(Ω) is compact.
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3. HOMOGENIZATION OF INTEGRAL ENERGIES
WITH CONVEX AND NON STANDARD GROWTH

In this section we study the asymptotic behaviour of (1.1) under the assumptions
(H1)–(H4), stated above. We start by recalling the properties satisfied by Fε in (1.2).

Since the function f in (1.2) is convex in the last argument and satisfies (H4),
it results that (cf. [21]) there exists a constant c > 0 such that

|f(y, z, λ)− f(y, z, µ)| ≤ c1 +B(2(1 + |λ|+ |µ|))
1 + |λ|+ |µ| |λ− µ| (3.1)

for all λ, µ ∈ RnN and for a.e. y ∈ RNy and for all z ∈ RNz . Hence for fixed ε > 0
and for v ∈ W 1

0L
B(Ω;RnN ), the function x 7→ f(xε ,

x
ε2 , v(x)) from Ω into R+ de-

noted by fε(·, ·, v), is well defined as an element of L1(Ω) and it results (arguing as
in [21, Proposition 3.1])

‖fε(·, ·, v)− fε(·, ·, w)‖L1(Ω)

≤ c(‖1‖
B̃,Ω + ‖b(1 + |v|+ |w|)‖

B̃,Ω) ‖v − w‖(LB(Ω))nN .
(3.2)

Moreover, (H4) ensures that for v ∈ W 1
0L

B(Ω;Rn) such that ‖Dv‖(LB(Ω))nN ≥ 1,
we have

c1 ‖Dv‖(LB(Ω))nN ≤ ‖fε(·, ·, Dv)‖L1(Ω) ≤ c2(1 + ‖Dv‖(LB(Ω))nN ).

Consequently it results that Fε is continuous, strictly convex and coercive thus there
exists a unique uε ∈W 1

0L
B(Ω) solution of the minimization problem min

v∈W 1
0L

B(Ω)
Fε(v),

i.e.
Fε(uε) = min

v∈W 1
0L

B(Ω)
Fε(v).

Let ψ ∈ C(Ω; Cper(Y × Z))N . For fixed x ∈ Ω the function

(y, z) ∈ RNy × RNz 7→ f(y, z, ψ(x, y, z)) ∈ R+,

denoted by f(·, ·, ψ(x, ·, ·)), lies in L∞(RNy ; Cb(RNz )). Hence one can define the
function x ∈ Ω 7→ f(·, ·, ψ(x, ·, ·)) and denote it by f(·, ·, ψ)) as an element of
C(Ω;L∞(RNy ; Cb(RNz ))).

Therefore, for fixed ε > 0, the function

x 7→ f
(x
ε
,
x

ε2 , ψ
(
x,
x

ε
,
x

ε2

))

denoted by fε(·, ·, ψε) is an element of L∞(Ω). Moreover, in view of the periodic-
ity of f(·, ·, ψ), which is in C(Ω;L∞per(Y ; C∞per(Z))) for all ψ ∈ C(Ω; Cper(Y × Z))N ,
the following result holds.
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Proposition 3.1. For every v ∈ C
(
Ω; Cper (Y × Z)

)N one has

lim
ε→0

∫

Ω

f
(x
ε
,
x

ε2 , v
(
x,
x

ε
,
x

ε2

))
dx =

∫∫∫

Ω×Y×Z

f (y, z, v (x, y, z)) dxdydz.

Furthermore, the mapping

v ∈ C
(
Ω; Cper (Y × Z)

)N 7→ f (·, ·, v) ∈ L1
per (Ω× Y × Z)

extends by continuity to a mapping still denoted by v 7→ f (·, ·, v) from
(LBper(Ω× Y × Z))N into L1

per(Ω× Y × Z) such that

‖f (·, ·, v)− f (·, ·, w)‖L1(Ω×Y×Z)

≤ c
(
‖1‖

B̃,Ω + ‖b (1 + |v|+ |w|)‖
B̃,Ω×Y×Z

)
‖v − w‖(LB

per(Ω×Y×Z))N

(3.3)

for all v, w ∈
(
LBper (Ω× Y × Z)

)N .
Proof. It is a simple adaptations of the proof of [21, Proposition 5.1], relying in turn
on Corollary 2.10. Moreover, (3.3) follows by (3.1) and by arguments identical to those
used to deduce (3.2), and omitted here since already presented in [21, Proposition 3.1],
which in turn require the application of Lemma 2.1

Corollary 3.2. Let

φε(x) := ψ0 + εψ1

(
x,
x

ε

)
+ ε2ψ1

(
x,
x

ε
,
x

ε2

)

for x ∈ Ω, where

ψ0 ∈ C∞0 (Ω), ψ1 ∈
[
C∞0 (Ω)⊗ C∞per(Y )

]
and ψ2 ∈

[
C∞0 (Ω)⊗ C∞per(Y )⊗ C∞per(Z)

]
,

then, as ε→ 0,

lim
ε→0

∫

Ω

f
(x
ε
,
x

ε2 , Dφε

)
dx =

∫∫∫

Ω×Y×Z

f (y, z,Dψ0 +Dyψ1 +Dzψ2) dxdydz.

Proof. It is a simple adaptation of [21, Corollary 5.1], relying on (3.1) and (3.2),
observing that

fε(·, ·, (Dψ0 +Dyψ1 +Dzψ2)ε) ∈ C(Ω;XB,∞per (RNy ; Cb))
and Corollary 2.10 applies.

Now, we observe that, thanks to the density of D(Ω) in W 1
0L

B(Ω), of C∞per(Y )/R
in W 1

#L
B
per(Y ) and that of C∞per(Y )⊗ C∞per(Z)/R in L1

per(Y ;W 1
#L

B(Z)), the space

F∞0 := D(Ω)×
[
D(Ω)⊗ C∞per(Y )/R

]
×
[
D(Ω)⊗ C∞per(Y )⊗ C∞per(Z)/R

]
(3.4)

is dense in F1
0L

B .
By hypotheses (H1)–(H4), it is easily seen that the following result holds.

Lemma 3.3. There exists a unique u = (u0, u1, u2) ∈ F1
0L

B which solves (1.7).
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3.1. PROOF OF THEOREM 1.1

This subsection is devoted to provide an application of reiterated two-scale conver-
gence to the study of minimum problems involving integral functionals, i.e. to prove
Theorem 1.1. The proof will be achieved by means of several steps. First, following
the same strategy in [37], (see also [33]) we regularize the integrands in order to get
an approximating family of differentiable integrands with some extra properties which
will be detailed in the sequel.

Let f : RN × RN × RnN → R be such that (H1)–(H4) hold. Set

fm : (y, z, λ) ∈ RN × RN × RnN 7→
∫

RnN

θm(η)f(y, z, λ− η)dη, (3.5)

where θm is a symmetric mollifier, namely θm ∈ D(RnN ) (integer m ≥ 1) with 0 ≤ θm,
supp(θm) ⊂ 1

mBnN (0, 1), (BnN (0, 1) being the open unit ball in RnN ), and
∫

BnN (0,1)

θm(η)dη = 1.

It is easily to verify the following conditions.
(H1)m fm(·, z, λ) is measurable for every (z, λ) ∈ RN × RnN and fm(y, ·, λ) is contin-

uous for almost all y ∈ RNy .
(H2)m fm(y, z, ·) is strictly convex for almost all (y, z) ∈ RNy × RNz .
(H3)m There exists a constant c > 0 such that

fm(y, z, λ) ≤ c(1 + b(|λ|)),
for every (z, λ) ∈ R× RnN , and for almost all y ∈ RN

(H4)m fm(·, ·, λ) is periodic for all λ ∈ RnN
(H5)m ∂fm

∂λ (y, z, λ) exists for all λ ∈ RnN and for almost all (y, z) and there exists
a constant c = c(m) > 0 such that

∣∣∣∣
∂fm
∂λ

(y, z, λ)
∣∣∣∣ ≤ c(m)(1 + b(|λ|))

for all λ ∈ RnN and for almost all (y, z) ∈ RN × RN .

All the convergence results established in Proposition 3.1 and Corollary 3.2
for f , remain valid with fm. Moreover for every v ∈ LBper(Ω × Y × Z)nN , one has
fm(·, ·, v)→ f(·, ·, v) in L1(Ω;L1

per(Y × Z)), as m→ +∞.
The next result extends to the Orlicz setting an argument presented in [37] to

prove Corollary 2.10 therein.
Proposition 3.4. Let (vε) be a sequence in LB(Ω)nN which reiteratively two-scale
converges (in each component) to v ∈ LBper(Ω×Y ×Z)nN , then, for any integer m ≥ 1,
we have that there exists a constant C ′ such that∫∫∫

Ω×Y×Z

fm(y, z, v)dxdydz − C ′

m
≤ lim inf

ε→0

∫

Ω

f
(x
ε
,
x

ε2 , vε(x)
)
dx.
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Proof. Let (vl)l≥1 be a sequence in D(Ω;R)⊗C∞per(Y ;R)⊗C∞per(Z;R) such that vl → v

in LBper(Ω × Y × Z)nN as l → ∞. The convexity and differentiability of fm(y, z, ·)
imply (for any integer l ≥ 1),
∫

Ω

fm

(x
ε
,
x

ε2 , vε(x)
)
dx ≥

∫

Ω

fm

(x
ε
,
x

ε2 , vl

(
x,
x

ε
,
x

ε2

))
dx

+
∫

Ω

∂fm
∂λ

(x
ε
,
x

ε2 , vl

(
x,
x

ε
,
x

ε2

))
·
(
vε(x)− vl

(
x,
x

ε
,
x

ε2

))
dx.

(H1)m, (H2)m and (H5)m guarantee that

x 7−→ ∂fm
∂λ

(·, ·, vl) ∈ C(Ω;L∞per(Y ; C∞per(Z))).

Hence, by Proposition 3.1, it results

lim
ε→0

∫

Ω

∂fm
∂λ

(x
ε
,
x

ε2 , vl

(
x,
x

ε
,
x

ε2

))
·
(
vε(x)− vl

(
x,
x

ε
,
x

ε2

))
dx

=
∫∫∫

Ω×Y×Z

∂fm
∂λ

(y, z, vl(x, y, z)) · (v(x, y, z)− vl(x, y, z))dxdydz.

Next, we observe that for a.e. y and every z, λ and a suitable positive constant c,
one has

fm(y, z, λ) ≤ f(y, z, λ) + 1
m
c(1 + b(2(1 + |λ|))). (3.6)

Indeed, for a.e. y, every z, λ, µ, by (3.1),

f(y, z, λ) ≤ f(y, z, µ) + c
B(2(1 + |λ|+ |µ|))

1 + |λ|+ |µ| |λ− µ|

≤ f(y, z, µ) + c(1 + b(1 + |λ|+ |µ|)) |λ− µ| .

Replacing λ by λ− η and µ by λ respectively, we obtain

f(y, z, λ− η) ≤ f(y, z, λ) + c(1 + b(1 + |λ− η|+ |λ|)) |η|
≤ f(y, z, λ) + c(1 + b(1 + |η|+ 2 |λ|)) |η| .

Let m > 0, and assume |η| ≤ 1
m ≤ 1. Hence,

f (y, z, λ− η) ≤ f (x, y, λ) + c (1 + b (2 (1 + |λ|))) 1
m
.

Multiplying both side of the inequality by θm, we get

f (y, z, λ− η) θm (η) ≤ f (y, z, λ) θm (η) + 1
m
c (1 + b (2 (1 + |λ|))) θm (η) .
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Integration leads to (3.6). Hence, given vε, we have

fm

(x
ε
,
x

ε2 , vε

)
≤ f

(x
ε
,
x

ε2 , vε

)
+ 1
m
c (1 + b (2 (1 + |vε|)))

thus
∫

Ω

fm

(x
ε
,
x

ε2 , vε

)
dx ≤

∫

Ω

f
(x
ε
,
x

ε2 , vε

)
dx+ 1

m
C|Ω|+ c

m

∫

Ω

α
b (2 (1 + |vε|))

α
dx,

0 < α ≤ 1.

But

α
b (2 (1 + |vε|))

α
≤ B̃ (αb (2 (1 + |vε|))) +B

(
1
α

)
≤ αB̃ (b (2 (1 + |vε|))) +B

(
1
α

)
.

Set
Ω1 = {x ∈ Ω : 2(1 + |vε(x)|) > t0} , Ω2 = Ω\Ω1.

Hence, we get
∫

Ω

α
b (2 (1 + |vε|))

α
dx ≤

∫

Ω

αB̃ (b (2 (1 + |vε|))) dx+B

(
1
α

)
|Ω|

≤
∫

Ω1

αB̃ (b (2 (1 + |vε|))) dx

+
∫

Ω2

αB̃ (b (2 (1 + |vε|))) dx+B

(
1
α

)
|Ω|

≤ |Ω2|αB̃ (b (t0)) +B

(
1
α

)
|Ω|+ α

∫

Ω1

B (4 (1 + |vε|)) dx.

Let C > 1 + ‖4 (1 + |vε|)‖B,Ω, then
∫

ΩB
(

4(1+|vε|)
C

)
dx ≤ 1.

Indeed,

B (4 (1 + |vε|)) = B

(
C

4 (1 + |vε|)
C

)
≤ K (C)B

(
4 (1 + |vε|)

C

)

whenever 4(1+|vε|)
C ≥ t0.

Set

Ω3 =
{
x ∈ Ω1 : 4 (1 + |vε|)

C
≥ t0

}
, Ω4 = Ω1\Ω3.
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Hence,

∫

Ω1

B (4 (1 + |vε|)) dx

=
∫

Ω4

B (4 (1 + |vε|)) dx+
∫

Ω3

B (4 (1 + |vε|)) dx

≤ |Ω4|B (Ct0) +
∫

Ω3

B (4 (1 + |vε|)) dx

≤ |Ω4|B (Ct0) +
∫

Ω3

B

(
C

4 (1 + |vε|)
C

)
dx

≤ |Ω4|B (Ct0) +K (C)
∫

Ω3

B

(
4 (1 + |vε|)

C

)
dx

≤ |Ω4|B (Ct0) +K (C)
∫

Ω

B

(
4 (1 + |vε|)

C

)
dx

≤ |Ω4|B (Ct0) +K (C)
∫

Ω

B

(
4 (1 + |vε|)

C

)
dx.

Since B ∈ 42, and (vε)ε is bounded in LB(Ω) it results that
∫

ΩB (4 (1 + |vε|)) dx
is also bounded.

Then, we have

∫

Ω

fm

(x
ε
,
x

ε2 , vε

)
dx ≤

∫

Ω

f
(x
ε
,
x

ε2 , vε

)
dx+ 1

m
C|Ω|

+ c

m

(
α|Ω|B̃ (b (t0)) +B

(
1
α

)
|Ω|+ α(|Ω4|B(Ct0)

+K(C))
∫

Ω

B

(
4 (1 + |vε|)

C

)
dx

)

≤
∫

Ω

f
(x
ε
,
x

ε2 , vε

)
dx+ 1

m
C ′

for a suitably big constant C ′.
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Thus,

lim inf
ε→0

∫

Ω

f
(x
ε
,
x

ε2 , vε (x)
)
dx

≥
∫∫∫

Ω×Y×Z

fm (y, z, vl (x, y, z)) dxdydz

− C ′

m
+
∫∫∫

Ω×Y×Z

∂fm
∂λ

(y, z, vl (x, y, z)) · (v (x, y, z)− vl (x, y, z)) dxdydz.

Using (H5)m we get
∣∣∣∣∣∣

∫∫∫

Ω×Y×Z

∂fm
∂λ

(y, z, vl (x, y, z)) · (v (x, y, z)− vl (x, y, z)) dxdydz

∣∣∣∣∣∣

≤ c ‖v − vl‖B,Ω×Y×Z · ‖1 + b (vl)‖B̃,Ω×Y×Z .

Since vl → v in LBper (Ω× Y × Z)nN as l → ∞, it follows that, for δ > 0 arbitrarily
fixed, there exists l0 ∈ N such that

∣∣∣∣∣∣

∫∫∫

Ω×Y×Z

∂fm
∂λ

(y, z, vl (x, y, z)) · (v (x, y, z)− vl (x, y, z)) dxdydz

∣∣∣∣∣∣
≤ δ

for every l ≥ l0. Hence, for every l ≥ l0,

lim inf
ε→0

∫

Ω

f
(x
ε
,
x

ε2 , vε (x)
)
dx ≥

∫∫∫

Ω×Y×Z

fm (y, z, vl (x, y, z)) dxdydz − δ −
C ′

m
.

Now sending l→∞ we have

lim inf
ε→0

∫

Ω

f
(x
ε
,
x

ε2 , vε (x)
)
dx ≥

∫∫∫

Ω×Y×Z

fm (y, z, v (x, y, z)) dxdydz − δ − C ′

m
.

The arbritrariness of δ concludes the proof.

Letting m → +∞, and replacing vε by Duε, with uε reiteratively two-scale
convergent to

u(x, y, z) := u0(x) + u1(x, y) + u2(x, y, z)
in W 1LB(Ω;Rn), one obtains the following result:
Corollary 3.5. Let (uε)ε be a sequence in W 1

0L
B (Ω;Rn) reiteratively two-scale

convergent to u = (u0, u1, u2) ∈ F1
0L

B. Then
∫∫∫

Ω×Y×Z

f (y, z,Du (x, y, z)) dxdydz ≤ lim inf
ε→0

∫

Ω

f
(x
ε
,
x

ε2 , Duε(x)
)
dx,

where Du = Du0 +Dyu1 +Dzu2.
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Now we are in position to put together all the previous results in order to prove
our main result.

Proof of Theorem 1.1. For every ε, let uε be a minimizer of Fε. Hypothesis (H4)
guarantees that (uε)ε is bounded in W 1

0L
B (Ω;R)n. On the other hand, since the real

sequence (Fε (uε))ε>0 is bounded, we can extract a not relabelled subsequence, such
that we have (a)− (b), in the statement, and lim

ε→0
Fε (uε) exists.

It remains to verify that u = (u0, u1, u2) is the solution of the minimization problem
(3.3). Let φ = (ψ0, ψ1, ψ2) ∈ F∞0 with ψ0 ∈ D(Ω)n, ψ1 ∈

[
D (Ω)⊗ C∞per(Y )/R

]n,
ψ2 ∈

[
C∞0 (Ω)⊗ C∞per(Y )⊗ C∞per(Z)/R

]n. Define

φε := ψ0 + εψ1 + ε2ψ2.

Then φε ∈W 1
0L

B (Ω;R)n so that we have
∫

Ω

f
(x
ε
,
x

ε2 , Duε(x)
)
dx ≤

∫

Ω

f
(x
ε
,
x

ε2 , Dφε(x)
)
dx.

Therefore, taking the limit as ε→ 0, using the arbitrariness of φ, the density of F∞0
in F1

0L
B , the above inequality leads us to

lim
ε→0

∫

Ω

f
(x
ε
,
x

ε2 , Duε(x)
)
dx ≤ inf

v∈F1
0L

B

∫∫∫

Ω×Y×Z

f (y, z,Dv (x, y, z)) dxdydz.

This inequality, together with Corollary 3.5, leads to the equality
∫∫∫

Ω×Y×Z

f (y, z,Du (x, y, z)) dxdydz = inf
v∈F1

0L
B

∫∫∫

Ω×Y×Z

f (y, z,Dv (x, y, z)) dxdydz.

Since (1.7) has a unique solution, we can conclude that the whole sequence (uε)ε
verifies (a)–(b) and the proof is completed.

The following corollary recasts the above results in terms of Γ-convergence with
respect to reiterated two-scale convergence, thus extending the result proven in the
single scale case in [23] (see [14] for details about Γ-convergence).
Corollary 3.6. Let Ω and f be as in Theorem 1.1. Then, for every u = (u0, u1, u2) ∈
F1

0L
B, it results

inf



lim inf

ε→0

∫

Ω

f
(x
ε
,
x

ε2 , Duε

)
dx : uε ⇀ u weakly reiteratively two-scale





= inf



lim sup

ε→0

∫

Ω

f
(x
ε
,
x

ε2 , Duε

)
dx : uε ⇀ u weakly reiteratively two-scale





=
∫∫∫

Ω×Y×Z

f(y, x,Du(x, y, z))dxdydz,

(3.7)

where Du = Du0 +Dyu1 +Dzu2.
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Proof. The statement will be proven if we show that
∫∫∫

Ω×Y×Z

f(y, x,Du(x, y, z))dxdydz ≤ lim inf
ε→0

∫

Ω

f
(x
ε
,
x

ε2 , Duε

)
dx,

for any sequence uε ⇀ u ∈ F1
0L

B reiteratively two-scale, and we exhibit a sequence uε
such that uε ⇀ u ∈ F1

0L
B reiteratively two-scale, and

lim sup
ε→0

∫

Ω

f
(x
ε
,
x

ε2 , Duε

)
dx ≤

∫∫∫

Ω×Y×Z

f(y, x,Du(x, y, z))dxdydz.

The first inequality is consequence of Corollary 3.5. For what concerns the upper
bound we preliminarily observe that a standard argument in the Orlicz setting allows
us to consider, for any given N-function B, a generating continuous function b such
that B verifies the 42 condition near 0.

Now let
φε(x) := ψ0 + εψ1

(
x,
x

ε

)
+ ε2ψ1

(
x,
x

ε
,
x

ε2

)

for x ∈ Ω, where
ψ0 ∈ C∞0 (Ω), ψ1 ∈

[
C∞0 (Ω)⊗ C∞per(Y )

]

and ψ2 ∈
[
C∞0 (Ω)⊗ C∞per(Y )⊗ C∞per(Z)

]
. Then

lim
ε→0

∫

Ω

f
(x
ε
,
x

ε2 , Dφε

)
dx =

∫∫∫

Ω×Y×Z

f (y, z,Dψ0 +Dyψ1 +Dzψ2) dxdydz.

Let

F1LB := W 1LB(Ω)× LBDy

(
Ω;W 1

#L
B(Y )

)
× LBDz

(
Ω;L1

per

(
Y ;W 1

#L
B(Z)

))

where LBDy

(
Ω;W 1

#L
B(Y )

)
, LBDz

(
Ω;L1

per

(
Y ;W 1

#L
B(Z)

))
have been defined in (1.5).

Recalling also that F1LB , equipped with the norm

‖u0‖F1LB = ‖Du‖B,Ω +‖Dyu1‖B,Ω×Y +‖Dzu2‖B,Ω×Y×Z , u0 = (u, u1, u2) ∈ F1
0L

B ,

is Banach space, thanks to the density of C∞(Ω) in W 1LB(Ω), of C∞per(Y )/R in
W 1

#L
B
per(Y ) and of C∞per(Y )⊗ C∞per(Z)/R in L1

per

(
Y ;W 1

#L
B(Z)

)
, the space

F∞ := C∞(Ω)×
[
D(Ω)⊗ C∞per(Y )/R

]
×
[
D(Ω)⊗ C∞per(Y )⊗ C∞per(Z)/R

]

is dense in F1LB .
As above, for v0 = (v, v1, v2) ∈ F1LB we denote by Dv0 the sum Dv+Dyv1 +Dzv2.
In view of the stated density, given δ > 0, there exist

uδ ∈ C∞(Ω), vδ ∈
[
D(Ω)⊗ C∞per(Y )/R

]
, wδ ∈

[
D(Ω)⊗ C∞per(Y )⊗ C∞per(Z)/R

]
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such that

‖v − uδ‖W 1LB(Ω) + ‖v1 − vδ‖L1(Ω;W 1
#L

B(Y )) + ‖v2 − wδ‖L1(Ω;LB
per(Y ;W 1

#L
B(Z))) < δ.

For every δ, ε > 0 and for every x ∈ Ω, define

uδ,ε(x) =: uδ(x) + εvδ

(
x,
x

ε

)
+ ε2wδ

(
x,
x

ε
,
x

ε2

)
.

It results that

Dxuδ,ε(x) = Dxuδ (x) + εDxvδ

(
x,
x

ε

)

+ ε2Dxwδ

(
x,
x

ε
,
x

ε2

)
+Dyvδ

(
x,
x

ε

)

+ εDywδ

(
x,
x

ε
,
x

ε2

)
+Dzwδ

(
x,
x

ε
,
x

ε2

)
.

As immediate consequence, for δ fixed,

uδ,ε → uδ in LB(Ω),
Dxuδ,ε→Dxuδ +Dyvδ +Dzwδ strongly reiteratively two-scale in LBper (Ω× Y × Z) ,

as ε→ 0.
Next, setting

cδ,ε =: ‖uδ,ε − v‖W 1LB(Ω) +
∣∣∣‖Duδ,ε‖LB(Ω) − ‖Dv +Dyv1 +Dyv2‖LB(Ω×Y×Z)

∣∣∣ ,

using the above density results:

lim
δ→0

lim
ε→0

cδ,ε = 0.

Then, via diagonalization, we can construct a sequence δ (ε)→ 0, as ε→ 0 and such
that:
(i) limδ(ε)→0 cδ(ε),ε = 0,
(ii) uδ(ε),ε → v in LB(Ω),
(iii) Duδ(ε),ε ⇀ Dxv +Dyv1 +Dzv2 strongly reiteratively in LBper (Ω× Y × Z) .

In particular, it follows that Duδ(ε),ε ⇀ Dxv weakly in LB(Ω), and

lim
ε→0

∫

Ω

f
(x
ε
,
x

ε2 , Duδ(ε),ε(x)
)
dx =

∫∫∫

Ω×Y×Z

f (y, z,Dxv +Dyv1 +Dzv2) dxdydz.

Since the above construction can be performed for every triple (v, v1, v2) ∈ F1LB , it is
enough to repeat the construction for u0 = (u, u1, u2) ∈ F1

0L
B as claimed.

Remark 3.7. It is worth to observe that the result in Corollary 3.6 holds, with the
exact same proof under weaker assumptions than those in Theorem 1.1: namely (H2)
can be replaced by convexity, and in (H4) it is not crucial to have f non-negative, it
is enough to have a bound from below. Moreover the same proof can be performed if
uε and u are vector valued and not just scalar valued functions.
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4. APPENDIX

Here we present the proof Proposition 2.3 which establishes the equivalence between
the norms ‖·‖B,Y×Z and ‖·‖ΞB(RN

y ;Cb(RN
z )) in XBper

(
RNy ; Cb

)
.

Proof of Proposition 2.3. The inclusion is a direct consequence of the definition, and
clearly every element in LBper(Y × Z), can be obtained as limit in ‖ · ‖B,Y×Z norm of
sequences in Cper(Y × Z).

On the other hand, by the very definition of XBper(RNy ; Cb), v ∈ XBper(RNy ; Cb) if and
only if there exists (vn)n∈N ∈ Cper(Y × Z) such that (vn)n∈N converge to v for the
norm ‖·‖ΞB(RN

y ;Cb(RN
z )) .

Thus for every w ∈ XBper(RNy ; Cb) there exist (wn)n∈N ⊂ Cper(Y × Z) such that as
n→∞, wn → w in ΞB(RNy ; Cb(RNz )).

We claim that for every u ∈ Cper(Y × Z), it results

‖u‖B,Y×Z ≤ ‖u‖ΞB(RN
y ;Cb) .

From the claim it follows that

‖wn − wm‖B,Y×Z ≤ ‖wn − wm‖ΞB(RN
y ;Cb(RN

z )) ,

for all m,n ∈ N. Therefore (wn)n∈N is a Cauchy sequence in XBper(RNy × RNz ) and in
XBper(RNy ; Cb). Hence there exist w1 ∈ XBper(RNy × RNz ), w2 ∈ XBper(RNy ; Cb) such that

lim
n→∞

∥∥wn − w1∥∥
B,Y×Z = lim

n→∞

∥∥wn − w2∥∥
ΞB(RN

y ;Cb(RN
z )) = 0.

Moreover the passage to the limit guarantees that
∥∥w1∥∥

B,Y×Z ≤
∥∥w2∥∥

ΞB(RN
y ;Cb(RN

z )) .

It is also clear, considering the convergence in the sense of distributions, that w1 = w2.
It remains to prove the claim. To this end, let u, v ∈ Cper (Y × Z) ; we have

∣∣∣∣∣

∫

BN (0,1)

u
(x
ε
,
x

ε2

)
v
(x
ε
,
x

ε2

)
dx

∣∣∣∣∣ ≤
∫

BN (0,1)

∥∥∥u
(x
ε
, ·
)∥∥∥
∞

∣∣∣v
(x
ε
,
x

ε2

)∣∣∣ dx

≤ 2 ‖vε‖
B̃,BN (0,1) ‖u‖ΞB(RN

y ;Cb(RN
z )) .

Passing to limit, as ε→ 0, we obtain:
∣∣∣∣∣∣

∫

Y×Z

u (y, z) v (y, z) dydz

∣∣∣∣∣∣
≤ 2 ‖v‖

B̃,Y×Z ‖u‖ΞB(RN
y ;Cb(RN

z )) .
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Using the density of Cper (Y × Z) in LB̃per (Y × Z) we obtain (with the topology of the
norm)

∣∣∣∣∣∣

∫

Y×Z

u (y, z) v (y, z) dydz

∣∣∣∣∣∣
≤ 2 ‖v‖

B̃,Y×Z ‖u‖ΞB(RN
y ;Cb(RN

z )) ,

for all v ∈ LB̃per (Y × Z). Thus

‖u‖B,Y×Z ≤ 2 ‖u‖ΞB(RN
y ;Cb(RN

z )) ,

for all u ∈ Cper (Y × Z), and we get the result for all u ∈ XBper
(
RNy ; Cb

)
, via standard

density arguments.
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