PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Graph based discrete optimization in structural dynamics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a relatively simple method of discrete structural optimization with dynamic loads is presented. It is based on a tree graph, representing discrete values of the structural weight. In practical design, the number of such values may be very large. This is because they are equal to the combination numbers, arising from numbers of structural members and prefabricated elements. The starting point of the method is the weight obtained from continuous optimization, which is assumed to be the lower bound of all possible discrete weights. Applying the graph, it is possible to find a set of weights close to the continuous solution. The smallest of these values, fulfilling constraints, is assumed to be the discrete minimum weight solution. Constraints can be imposed on stresses, displacements and accelerations. The short outline of the method is presented in Sec. 2. The idea of discrete structural optimization by means of graphs. The knowledge needed to apply the method is limited to the FEM and graph representation. The paper is illustrated with two examples. The first one deals with a transmission tower subjected to stochastic wind loading. The second one with a composite floor subjected to deterministic dynamic forces, coming from the synchronized crowd activities, like dance or aerobic.
Rocznik
Strony
91--102
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Institute of Fundamental Technological Research of the Polish Academy of Sciences, 5b Pawinskiego St., 02-106 Warsaw, Poland
autor
  • Institute of Mechanized Construction and Rock Mining, 6/8 Racjonalizacji St., 02-673 Warsaw, Poland
Bibliografia
  • [1] M.J. Turner, “Design of minimum-mass structures with specified natural frequencies”, AIAA J. 5 (3), 406-412 (1967).
  • [2] K.C. Tang, M.Q. Brewster, E.J. Haug, B.R. McCart, and T.D. Streeter, “Optimal design of structures with constraints on natural frequency”, AIAA J. 8 (6), 1012-1019 (1970).
  • [3] Z. Mroz, “Optimum design of elastic structures subjected to dynamic, harmonically-varying loads”, Ang. Math. Mech. 50, 303-309 (1970).
  • [4] B.L. Pierson, “A survey of optimal structural design under dynamic constraints”, Int. J. Numerical Methods in Engineering 4 (4), 491-499 (1972).
  • [5] O.G. McGee and K.F. Phan, “On the convergence quality of minimum-weight design of large space frames under multiple dynamic constraints”, Structural Optimization 4, 156-164 (1992).
  • [6] R. Grandhi, “Structural optimization with frequency constraints - a review”, AIAA J. 31 (1870), 2296-2303 (1993).
  • [7] J.S. Arora, “Methods for discrete variable structural optimization”, in Recent Advances in Optimal Structural Design, ed. S.A Burns, pp. 1-40, ASCE Publication, Reston, 2002.
  • [8] L.C. Lee, B. Castro, and P.W. Partridge, “Minimum weight design of framed structures using a genetic algorithm considering dynamic analysis”, Latin American J. Solids and Structures 3, 107-123 (2006).
  • [9] W. Gutkowski, “Structural optimization with discrete design variables”, Eur. J. Mech., Solids A 16, 107-126 (1997).
  • [10] B. Blachowski and W. Gutkowski, “Discrete structural optimization by removing redundant material”, Engineering Optimization 40 (7), 685-694 (2008).
  • [11] B.S. Kang, W.S. Choi, and G.J. Park, “Structural optimization under equivalent static loads transformed from dynamic loads based on displacement”, Computers and Structures 79, 145-154 (2001).
  • [12] W.S. Choi, K.B. Park, and G.J. Park, “Calculation of equivalent static load and its application”, Trans. SMIRT Washington DC 16, paper #1111 (2001).
  • [13] M. Papadrakakis, N.D. Lagaros, and V. Plevris, “Multiobjective optimization of skeletal structures under static and seismic loading conditions”, Engineering Optimization 34 (6), 645-669 (2002).
  • [14] A. Norkus and R. Karkauskas, “Truss optimization under complex constraints and random loading”, J. Civil Engineering and Management 10 (3), 217-226 (2004).
  • [15] H.A. Jensen and M. Beer, “Discrete-continuous variable structural optimization of systems under stochastic loading”, Structural Safety 32 (5), 293-304 (2010).
  • [16] H.Y. Guo and Z.L. Li, “Structural topology optimization of high-voltage transmission, tower with discrete variables”, Structural and Multidisciplinary Optimization 43 (6), 851-861 (2011).
  • [17] W. Gutkowski, J. Bauer, and Z. Iwanow, “Support number and allocation for optimum structure”, Discrete Structural Optimization, Proc. IUTAM Symp. 1, 168-177 (1993).
  • [18] Z. Iwanow, “An algorithm for finding an ordered sequence of values of a discrete linear function”, Control and Cybernetics 6, 238-249 (1990).
  • [19] B. Blachowski and W. Gutkowski, “A hybrid continuousdiscrete approach to large discrete structural optimization problems”, Structural and Multidisciplinary Optimization 41 (6), 965-977 (2010).
  • [20] B. Blachowski and W. Gutkowski, “Revised assumptions for monitoring and control of 3D lattice structures”, 11th Pan- American Congress Applied Mechanics PACAM XI 1, CDROM (2010).
  • [21] J. Gu, Z.D. Ma, and G.M. Hulbert, “A new load-dependent Ritz vector method for structural dynamics analyses: quasistatic Ritz vectors”, Finite Elements in Analysis and Design 36 (3), 261-278 (2000).
  • [22] B. Blachowski, “Model based predictive control of guyed mast vibration”, J. Theoretical and Applied Mechanics 45 (2), 405-423 (2007).
  • [23] W. Borutzky, Bond Graph Methodology: Development and Analysis of Multidisciplinary Dynamic System Models, SCS Publishing House, Erlangen, 2004.
  • [24] A. Buchacz, “Modifications of cascade structures in computer aided design of mechanical continuous vibration bar systems represented by graphs and structural numbers”, J. Materials Processing Technology 157-158, 45-54 (2004).
  • [25] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, Berlin, 2008.
  • [26] E. Wilson, Three-Dimensional Static and Dynamic Analysis of Structures, 3rd edition, Computers and Structures Inc., Berkeley, 2002.
  • [27] H.A. Buchholdt, Structural Dynamics for Engineers, Thomas Telford, London, 1997.
  • [28] L. Carassale and G. Piccardo, “Double modal transformation and wind engineering applications”, J. Engineering Mechanics 127 (5), 432-439 (2001).
  • [29] E.N. Strommen, Theory of Bridge Aerodynamics, Springer, Berlin, 2006.
  • [30] M. Petyt, Introduction to Finite Vibration Analysis, 2nd edition, Cambridge University Press, Cambridge, 2010.
  • [31] W. Chen and T. Atsuta, Theory of Beam-columns, Space Behavior and Design, vol. 2, J. Ross Publishing, London, 2008.
  • [32] A.L. Smith, S.J. Hicks, and P.J. Devine, “Design of floors for vibration: a new approach”, The Steel Construction Institute, New York, 2009.
  • [33] M. Szczepaniak and T. Burczynski, “Swarm optimization of stiffeners locations in 2D structures” , Bull. Pol. Ac.: Tech. 60 (2), 241-246 (2012).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a827cda-af5e-4281-9202-fa74f6b71147
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.