PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface treatment of porous Ti13Nb13Zr alloy for biomedical applications

Identyfikatory
Warianty tytułu
PL
Obróbka powierzchniowa porowatego stopu Ti13Nb13Zr do zastosowań biomedycznych
Języki publikacji
EN
Abstrakty
EN
The porous Ti13Zr13Nb alloy intended for load-bearing implants has been investigated. The alloy powder was obtained by plasma jet spraying a solid alloy sheet. Then the alloy granules were sintered by employing powder metallurgy, with and without a space holder, resulting in specimens demonstrating an open porous structure with a porosity up to 68% and mean pore size ranging between 30 and 150 μm. Further thermal, chemical and/or electrochemical oxidation caused increased corrosion resistance and the appearance of nanotubular titania layers after anodization, with nanotubes up to 2 μm in length and 80÷120 nm in diameter. The nanotubular layers were finally coated with deposits of hydroxyapatite obtained by using biomimetic or chemical (Alternate Immersion and biomimetic) methods. In conclusion, the employed surface techniques allow substantial improvement of the chemical stability, corrosion resistance, biocompatibility and bioactivity of the investigated titanium based biomaterial.
PL
Przeprowadzono badania materiału porowatego, przeznaczonego na implanty ortopedyczne, wytworzonego metodą metalurgii proszków ze stopu Ti13Zr13Nb. Proszki z badanego stopu uzyskano metodą rozpylania plazmowego. Były one następnie spiekane bez lub z użyciem porogenu. Otrzymano próbki o otwartej porowatej strukturze, stopniu porowatości do 68% i średniej wielkości porów w przedziale od 30 do 150 mikrometrów. Obróbka próbek porowatych – utlenianie termiczne, chemiczne i/lub elektrochemiczne spowodowało otrzymanie krystalicznych lub nanorurkowych warstw tlenkowych, składających się z nanorurek o długości do 2 μm i średnicy 80÷120 nm oraz zwiększenie ich odporności na korozję. Nanorurkowe warstwy tlenkowe zostały następnie pokryte hydroksyapatytem metodą biomimetyczną lub chemiczną (przemiennego zanurzenia). Podsumowując, zastosowane techniki obróbki powierzchniowej pozwalają na znaczną poprawę stabilności chemicznej, odporności korozyjnej, biozgodności i aktywności biologicznej biomateriałów o osnowie tytanu.
Rocznik
Strony
6--12
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Departement of Materials and Welding Engineering, Gdansk University of Technology (GUT)
  • Departement of Materials and Welding Engineering, Gdansk University of Technology (GUT)
autor
  • Departement of Materials and Welding Engineering, Gdansk University of Technology (GUT)
autor
  • Departement of Materials and Welding Engineering, Gdansk University of Technology (GUT)
  • Departement of Mechanics and Mechatronics, Gdansk University of Technology (GUT)
autor
  • Departement of Materials and Welding Engineering, Gdansk University of Technology (GUT)
autor
  • Departement of Materials and Welding Engineering, Gdansk University of Technology (GUT)
Bibliografia
  • [1] Świeczko-Żurek B., Ziemlański A.: Allergies to implant metal compounds. Adv. Mater. Sci. 3 (9) (2009) 39÷46.
  • [2] Malluche H. H.: Aluminium and bone disease in chronic renal failure. Nephr. Dialysis Transplant. 17 (2002) 21÷24.
  • [3] Domingo J. L.: Vanadium and diabetes. What about vanadium toxicity? Molecul. Cellul. Biochem. 203 (2000) 185÷187.
  • [4] Sobieszczyk S.: Optimal features of porosity of Ti alloys considering their bioactivity and mechanical properties. Adv. Mater. Sci. 2 (10) (2010) 20÷30.
  • [5] Ryan G., Pandit A., Apatsidis D. P.: Fabrication methods of porous materials for use in orthopaedic applications. Biomater. 27 (2006) 2651÷2670.
  • [6] Zieliński A., Sobieszczyk S.: Corrosion of titanium biomaterials, mechanisms, effects and modelisation. Corr. Rev. 26 (2008) 1÷22.
  • [7] Okazaki Y., Gotoh E., Manabe T., Kobayashi K.: Comparison of metal concentrations in rat tibia tissues with various metallic implants. Biomater. 28 (2004) 5913÷6025.
  • [8] Koike M., Fuji H.: The corrosion resistance of pure titanium in organic acids. Biomater. 22 (2001) 2931÷2936.
  • [9] Okazaki Y., Gotoh E.: Comparison of metal release from various metallic biomaterials in vitro. Biomater. 26 (2005) 11÷21.
  • [10] Khan M. A., Williams R. L., Williams D. F.: In-vitro corrosion and wear of titanium alloys in the biological environment. Biomater. 17 (1996) 2117÷2126.
  • [11] Browne M., Gregson P. J.: Effect of mechanical surface pretreatment on metal ion release. Biomater. 21 (2000) 385÷392.
  • [12] Sobieszczyk S.: Self-organised nanotubular oxide layers on Ti and Ti alloys. Adv. Mater. Sci. 2 (9) (2009) 25÷41.
  • [13] Nishiguchi S., Kato H., Fujita H. et al.: Titanium metals form direct bonding to bone after alkali and heat treatments. Biomater. 22 (2001) 2525÷2533.
  • [14] Wang X.-X., Hayakawa S., Tsuru K., Osaka A.: Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomater. 23 (2002) 1353÷1357.
  • [15] Takeuchi M., Abe Y., Yoshida Y. et al.: Acid pretreatment of titanium implants. Biomater. 24 (2003) 1821÷2827.
  • [16] Sul Y.-T., Johansson C. B., Petronis S. et al.: Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configuration, surface roughness, crystal structure and chemical composition. Biomater. 23 (2002) 491÷501.
  • [17] V.M. Frauchiger, F. Schlottig, B. Gasser, M. Textor, Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications, Biomater. 25 (2004) 593-606.
  • [18] Carama O. R., Pauli C. P., Giordano M. C.: Potentiodynamic behaviour of mechanically polished titanium electrodes. Electrochim. Acta 29 (1984) 1111÷1117.
  • [19] Uchida Yang M., Kim H.-M. et al.: Preparation of bioactive titanium metal via anodic oxidation treatment. Biomater. 25 (2004) 1003÷1010.
  • [20] Zhu X., Kim K.-H., Jeong J.: Anodic oxide films containing Ca and P of titanium biomaterial. Biomater. 22 (2001) 2199÷2206.
  • [21] Krasicka-Cydzik E.: Gel-like layer development during formation of thin anodic films on titanium in phosphoric acid solutions. Corr. Sci. 46 (2004) 2487÷2502.
  • [22] Sobieszczyk S.: Hydroxyapatite coatings on porous Ti and Ti alloys. Adv. Mater. Sci. 1 (10) (2010) 19÷28.
  • [23] Sobieszczyk S., Zieliński A.: Coatings in arthroplasty. Adv. Mater. Sci. 4 (8) (2008) 35÷54.
  • [24] Mohammadi Z., Ziaei-Moayyed A. A., Sheikh-Mehdi Mesgar A.: Adhesive and cohesive properties by indentation method of plasma- sprayed hydroxyapatite coatings. Appl. Surf. Sci. 253 (2007) 4960÷4965.
  • [25] Stoch A., Jastrzębski W., Długoń E. et al.: Sol-gel derived hydroxyapatite coatings on titanium and its alloy Ti6Al4V. J. Molec. Struct. 744-747 (2005) 633÷640.
  • [26] Yamaguchi T., Tanaka Y., Ide-Ektessabi A.: Fabrication of hydroxyapatite thin films for biomedical applications using RF magnetron sputtering. Nucl. Instrum. Meth. Phys. Res. B 249 (2006) 723÷725.
  • [27] Lee I.-S., Zhao B., Lee G.-H. et al.: Industrial application of ion beam assisted deposition on medical implants. Surf. Coat. Technol. 201 (2007) 5132÷5137.
  • [28] Kim H., Camata R. P., Lee S. et al.: Crystallographic texture in pulsed laser deposited hydroxyapatite bioceramic coatings. Acta Mater. 55 (2007) 131÷139.
  • [29] Mayr H., Ordung M., Ziegler G.: Development of thin electrophoretically deposited hydroxyapatite layers on Ti6Al4V hip prosthesis. J. Mater. Sci. 41 (2006) 8138÷8143.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a7c4cd4-ef6e-4215-a9ef-e891d319d642
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.