PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of cyclic hardening on stress relaxation in SUS316HTP under creep-fatigue loading at 700ºC: experiments and simulations nobutada

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cyclic hardening and stress relaxation experiments of SUS316HTP were performed under creep-fatigue loading with tensile strain holding at 700ºC. Experiments revealed that under strain holding, the slow stress-relaxation stage satisfying Norton’s law with slight cyclic hardening followed a rapid stress-relaxation stage that was noticeably affected by cyclic hardening. This suggests that in the slow stress-relaxation stage, inelastic deformation mechanisms different from that of viscoplasticity occurred. Experiments were simulated using a cyclic viscoplastic-creep model in which the inelastic strain-rate was decomposed into viscoplastic and creep components that were affected differently by cyclic hardening. The simulation accurately reproduced the experiments.
Rocznik
Strony
497--510
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Industrial Science Research Institute, Nagoya, Japan
autor
  • Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
autor
  • IHI Corporation, Yokohama, Japan
autor
  • IHI Corporation, Yokohama, Japan
autor
  • IHI Corporation, Yokohama, Japan
autor
  • Department of Mechanical Engineering, Osaka University, Osaka, Japan
Bibliografia
  • 1. Ainsworth R.A., 2006, R5 procedures for assessing structural integrity of components under creep and creep-fatigue conditions, International Materials Reviews, 51, 107-126
  • 2. Chaboche J.L., 2008, A review of some plasticity and viscoplasticity constitutive theories, International Journal of Plasticity, 24, 1642-1693
  • 3. Chaboche J.L., Dang Van K., Cordier G., 1979, Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel, Proceedings of the 5th International Conference on Structural Mechanics in Reactor Technology, L, L11/3
  • 4. Crossman F.W., Ashby M.F., 1975, The non-uniform flow of polycrystals by grain-boundary sliding accommodated by power-law creep, Acta Metallurgica, 23, 425-440
  • 5. Goodall I.W., Hales R., Walters D.J., 1981, On constitutive relations and failure criteria of an austenitic steel under cyclic loading at elevated temperature, Creep in Structures, Springer-Verlag, 103-127
  • 6. Hales R., 1980, A quantitative metallographic assessment of structural degradation of type 316 stainless steel during creep-fatigue, Fatigue of Engineering Materials and Structures, 3, 339-356
  • 7. Hales R., 1983, A method of creep damage summation based on accumulated strain for the assessment of creep-fatigue endurance, Fatigue of Engineering Materials and Structures, 6, 121-135
  • 8. Inoue T., Igari T., Okazaki M., Sakane M., Tokimasa K., 1989, Fatigue-creep life prediction of 2.25Cr-1Mo steel by inelastic analysis, Nuclear Engineering and Design, 114, 311-321
  • 9. Kang G., Ohno N., Nebu A., 2003, Constitutive modeling of strain range dependent cyclic hardening, International Journal of Plasticity, 19, 1801-1819
  • 10. Kobayashi M., Mukai M., Takahashi H., Ohno N., Kawakami T., Ishikawa T., 2003, Implicit integration and consistent tangent modulus of a time-dependent non-unified constitutive model, International Journal for Numerical Methods in Engineering, 58, 1523-1543
  • 11. Krausz A.S., Krausz K., 1996, Unified Constitutive Laws of Plastic Deformation, Academic Press, San Diego
  • 12. Miller A., 1976, An inelastic constitutive model for monotonic, cyclic, and creep deformation: Part 1 – equations development and analytical procedures, Journal of Engineering Materials and Technology, 98, 97-105
  • 13. Mróz Z., 1967, On the description of anisotropic workhardening, Journal of the Mechanics and Physics of Solids, 15, 163-175
  • 14. Nam S.W., 2002, Assessment of damage and life prediction of austenitic stainless steel under high temperature creep-fatigue interaction condition, Materials Science and Engineering A, 322, 64-72
  • 15. Nouailhas D., 1989, Unified modelling of cyclic viscoplasticity: Application to austenitic stainless steels, International Journal of Plasticity, 5, 501-520
  • 16. Ohno N., 1982, A constitutive model of cyclic plasticity with a nonhardening strain region, Journal of Applied Mechanics, 49, 721-727
  • 17. Ohno N., Abdel-Karim M., Kobayashi M., Igari T., 1998, Ratchetting characteristics of 316FR steel at high temperature, Part I: strain-controlled ratchetting experiments and simulations, International Journal of Plasticity, 14, 355-372
  • 18. Ohno N., Mizushima S., Okumura D., Tanie H., 2016a, Warpage variation analysis of Si/solder/Cu layered plates subjected to cyclic thermal loading, Advanced Methods of Continuum Mechanics for Materials and Structures, Advanced Structured Materials, 60, 185-204
  • 19. Ohno N., Tsuda M., Sugiyama H., Okumura D., 2016b, Elastic-viscoplastic implicit integration algorithm applicable to both plane stress and three-dimensional stress states, Finite Elements in Analysis and Design, 109, 54-64
  • 20. Ohno N., Wang J.D., 1991, Transformation of a nonlinear kinematic hardening rule to a multisurface form under isothermal and nonisothermal conditions, International Journal of Plasticity, 7, 879-891
  • 21. Ohno N., Wang J.D., 1993, Kinematic hardening rules with critical state of dynamic recovery, Part I: formulation and basic features for ratchetting behavior, International Journal of Plasticity, 9, 375-390
  • 22. Ohno N., Yamamoto R., Okumura D., 2017a, Thermo-mechanical cyclic hardening behavior of 304 stainless steel at large temperature ranges: Experiments and simulations, International Journal of Mechanical Sciences (article in press)
  • 23. Ohno N., Yamamoto R., Sasaki T., Okumura D., 2017b, Resetting scheme for plastic strain surface in constitutive modeling of cyclic plasticity, ZAMM – Zeitschrift f¨ur Angewandte Mathematik und Mechanik (article in press, DOI: 10.1002/zamm.201700298)
  • 24. Priest R.H., Ellison E.G., 1981, A combined deformation map-ductility exhaustion approach to creep-fatigue analysis, Materials Science and Engineering, 49, 7-17
  • 25. Takahashi Y., 1998, Evaluation of creep-fatigue life prediction methods for low-carbon nitrogenadded 316 stainless steel, Journal of Engineering Materials and Technology, 120, 119-125
  • 26. Takahashi Y., Shibamoto H., Inoue K., 2008, Study on creep-fatigue life prediction methods for low-carbon nitrogen-controlled 316 stainless steel (316FR), Nuclear Engineering and Design, 238, 322-335
  • 27. Trampczynski W., 1988, The experimental verification of the evolution of kinematic and isotropic hardening in cyclic plasticity, Journal of the Mechanics and Physics of Solids, 36, 417-441
  • 28. Yan X.L., Zhang X.C., Tu S.T., Mannan S.L., Xuan F.Z., Lin Y.C., 2015, Review of creep-fatigue endurance and life prediction of 316 stainless steels, International Journal of Pressure Vessels and Piping, 126-127, 17-28
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a7a2079-bf48-4955-ac75-a76690eb4582
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.