PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of the changes in surface properties of yeast biomass, Saccharomyces cerevisiae, on Pb2+ biosorption

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study examines changes that occur in yeast cell surface properties during physical, chemical and mechanical treatment and their potential impact on the biomass uptake capacity for lead. As a result of biomass treatment, the negative surface charge decreased and relative hydrophobicity increased. A strong negative correlation was discovered between the negative surface charge of variously modified yeast cells and their relative hydrophobicity. Despite the lower negative surface charge of treated in comparison to untreated yeast cells, the treated biomass had higher lead sorption capability. No relationship was found between the effectiveness of lead sorption by treated biomass and its surface charge or relative hydrophobicity.
Rocznik
Strony
3--10
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173 90-924 Lodz, Poland
autor
  • Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173 90-924 Lodz, Poland
Bibliografia
  • 1. Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Adv 2009, 27:195-226.
  • 2. Oliveira R, Palmieri M, Garcia O. Biosorption of metals: State of the art, general features and potential applications for environmental and technological processes. In: Progress in biomass and bioenergy production, Shaukat S, Ed.; Intech, Shanghai, China, 2011, pp. 151-176.
  • 3. Fomina M, Gadd GM. Biosorption: current perspectives on concept, definition and application. Bioresour Technol 2014, 160:3-14.
  • 4. Parvathi K, Nagendran R, Nareshkumar R. Lead biosorption onto waste beer yeast by-product, a means to decontaminate effluent generated from battery manufacturing industry. Electron J Biotechnol 2007, 10:92-105.
  • 5. Wang J. Biosorption of copper (II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochem 2002, 37:847-50.
  • 6. Göksungur Y, Üren S, Güvenç U. Biosorption of copper ions by caustic treated waste baker’s yeast biomass. Turkish J Biol 2003, 27:23-9.
  • 7. Göksungur Y, Üren S, Güvenç U. Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresour Technol 2005, 96:103-9.
  • 8. Zhang Y, Liu W, Xu M, Zheng F, Zhao M. Study of the mechanisms of Cu2+ biosorption by ethanol/caustic-pretreated baker’s yeast biomass. J Hazard Mater 2010, 178:1085-93.
  • 9. Shroff KA, Vaidya VK. Effect of pre-treatments on biosorption of Ni (II) by dead biomass of Mucor hiemalis. Eng Life Sci 2011, 11:588-97.
  • 10. Shroff KA, Vaidya VK. Effect of pre-treatments on the biosorption of Chromium (VI) ions by the dead biomass of Rhizopus arrhizus. J Chem Technol Biotechnol 2012, 87:294-304.
  • 11. Wang J, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnol Adv 2006, 24:427-51.
  • 12. Chojnacka K. Biosorption and bioaccumulation – the prospects for practical applications. Environ Int 2010, 36:299-307.
  • 13. Soares EV, Soares HMVM. Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environ Sci Pollut Res 2012, 19:1066-83.
  • 14. Ahluwalia SS, Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 2007, 98:2243-57.
  • 15. Michalak I, Chojnacka K, Witek-Krowiak A. State of the art for the biosorption process – a review. Appl Biochem Biotechnol 2013, 170:1389-1416.
  • 16. Loukidou MX, Peleka EN, Karapantsios TD, Matis KA. Biosorption of metal ions. Trends Chem Eng 2011, 13:53-64.
  • 17. Machado MD, Janssens S, Soares HMVM, Soares EV. Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass. J Appl Microbiol 2009, 106:1792-804.
  • 18. Fukudome K, Sato M, Takata Y, Kuroda H, Watari J, Takashio M. Evaluation of yeast physiological state by Alcian Blue retention. J Am Soc Brew Chem 2002, 60:149-52.
  • 19. Powell CD, Quain DE, Smart KA. The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation. FEMS Yeast Res 2003, 3:149-57.
  • 20. Zabochnicka-Świątek M, Krzywonos M. Potentials of biosorption and bioaccumulation processes for heavy metal removal. Pol J Environ Stud 2014, 23:551-561.
  • 21. Laurent J, Casellas M, Dagot C. Heavy metals uptake by sonicated activated sludge: Relation with floc surface properties. J Hazard Mater 2009, 162:652-60.
  • 22. Kordialik-Bogacka E. Surface Properties of Yeast Cells during Heavy Metal Biosorption. Cent Eur J Chem 2011, 9:348-51.
  • 23. Vasudevan P, Padmavathy V, Dhingra SC. Biosorption of monovalent and divalent ions on baker’s yeast. Bioresour Technol 2002, 82:285-9.
  • 24. Pokhrel D, Viraraghavan T. Arsenic removal from an aqueous solution by a modified fungal biomass. Water Res 2006, 40:549-52.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a79fab7-9f91-4264-9fb8-d9f2ac94783e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.