PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Ultrasonic-Assisted Preparation of Powders on Synthesis of Rare Earth Zirconates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the research was to determine the effect of sonochemical treatments on homogenization of powders as well as phase composition and thermal stability of sinters. The compounds were prepared from Eu2O3 and ZrO2 powders, weighed in the mass ratio 1:1. Initially ultrasound treatment was applied. 750-Watt ultrasonic processor VCX-750 equipped with sealed converter VC-334 and horn 630-0219 with the diameter of 13 mm (Sonics & Materials, Inc.) was used as a source of ultrasound. Applied ultrasound frequency was 20 kHz, power density was controlled in the range from 75 W/cm2 to 340 W/cm2. Investigated compounds were synthesized via solid-state reaction (SSR). The Differential Scanning Calorimetry (DSC) was used in order to investigate the effect of sonochemical treatment on the synthesis of prepared mixtures the powders particle size distribution was analyzed. Ultrasound treatment what wasn’t never been reported before.
Słowa kluczowe
EN
Twórcy
autor
  • Silesian University of Technology, 8 Krasińskiego Str., 40-019 Katowice, Poland
  • Silesian University of Technology, 8 Krasińskiego Str., 40-019 Katowice, Poland
Bibliografia
  • [1] Jeanine T. DeMasi-Marcin, Dinesh K. Gupta, Protective coatings in the gas turbine engine, Surface and Coatings Technology 68-69, 1-9 (1994).
  • [2] D. R. Clarke, M. Oechsner, N. P. Padture, Thermal-barrier coatings for more efficient gas-turbine engines, MRS Bulletin 37 (10), 891-898 (2012).
  • [3] D. R. Clarke, S. R. Phillpot, Thermal barrier coating materials, Materials Today 8 (6), 22-29 (2005).
  • [4] R. Vassen, M. O. Jarligo, T. Steinke, D. E. Mack, D. Stöver, Overview on advanced thermal barrier coatings, Surface and Coatings Technology 205 (4), 938-942 (2010).
  • [5] F. H Stott, D. J. Wet, R. de Taylor, Degradation of thermal-barrier coatings at very high temperatures, MRS Bulletin 19 (10), 46 (1994).
  • [6] J. L. Smialek, F. A. Archer, R. G. Garlick, Turbine airfoil degradation in the Persian Gulf war, JOM 46 (12), 39-41 (1994).
  • [7] M. P. Borom, C. A. Johnson, L. A. Peluso, Role of environmental deposits and operating surface temperature in spallation of airplasma sprayed thermal barrier coatings, Surface and Coatings Technology 86-87 (1), 116 (1996).
  • [8] J. Kim, M. G. Dunn, A. J. Baran, D. P. Wade, E. L. Tremba, Deposition of volcanic materials in the hot sections of two gas turbine engines, J. Eng. Gas Turbines Power 115 (3), 641 (1993).
  • [9] C. Mercer, S. Faulhaber, A. G. Evans, R. Darolia, A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration Acta Materialia 53 (4), 1029-1039 (2005).
  • [10] S. Krämer, S. Faulhaber, M. Chambers, D. R. Clarke, C. G. Levi, J. W. Hutchinson, A. G. Evans, Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration, Materials Science and Engineering A 490 (1-2), 26-35 (2008).
  • [11] R. L. Jones, Some aspects of the hot corrosion of thermal barrier coatings, Journal of Thermal Spray Technology 6 (1), 77-84 (1997).
  • [12] N. Q. Wu, Z. Chen, S. X. Mao, Hot corrosion mechanism of composite alumina/yttria-stabilized zirconia coating in molten sulfate-vanadate salt, Journal of the American Ceramic Society 88 (3), 675-682 (2005).
  • [13] B. R. Marple, J. Voyer, C. Moreau, D. R. Nagy, Corrosion of Thermal Barrier Coatings by Vanadium and Sulfur Compounds, Materials at High Temperature 17 (3), 397-412 (2000).
  • [14] A. Zhang, M. Lü, G. Zhou, S. Wang, Y. Zhou, Combustion synthesis and photoluminescence of Eu3+, Dy3+-doped La2Zr2O7 nanocrystals, Journal of Physics and Chemistry of Solids 67 (11), 2430-2434 (2006).
  • [15] J. Y. Li, H. Dai, Q. Li, X. H. Zhong, X. F Ma, J. Meng, X. Q. Cao, Lanthanum zirconate nanofibers with high sintering-resistance, Materials Science and Engineering B 133 (1-3), 209-212 (2006).
  • [16] B. D. Begg, N. J. Hess, D. E. McCready, S. Thevuthasan, W. J. Weber, Heavy-ion irradiation effects in Gd2(Ti2-xZrx)O7 pyrochlores, Journal of Nuclear Materials 289 (1-2), 188-193 (2001).
  • [17] C. R. Stanek, Atomic Scale Disorder in Fluorite and Fluorite Related Oxides. PhD Thesis, Imperial College of Science, Technology and Medicine. London SW7 2AZ, August 2003.
  • [18] K. S. Suslick, D. A. Hammerton, R. E. Cline Jr., J. Am. Chem. Soc. 108, 5641-5642 (1986).
  • [19] B. Toukoniitty, J.-P. Mikkola, D. Yu. Murzin, T. Salmi, Applied Catalysis A 279, 1-22 (2005).
Uwagi
EN
1. We gratefully acknowledge the financial support of the National Science Centre, Poland under grant number 2016/21/D/ST8/01687.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a79ae69-32dd-4542-bcce-cfd583b995cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.