PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Study on NH3-SCR of High Entropy Mineral Catalytic Materials for Different Ratios of Rare Earth Concentrate/Rare Earth Tailing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A series of high-entropy mineral catalytic materials were obtained by mixing rare earth tailings containing Fe oxide and rare earth concentrate rich in Ce in Baiyun Obo in different proportions, and by acid-base leaching and microwave roasting. The effects of different proportions of mixed rare earth minerals on the denitrification activity of the samples were analyzed by various techniques, including XRD, EDS and SEM. The mineral phase structure and surface morphology of the catalysts were analyzed. The surface properties of the samples were tested by TPD and XPS methods. The denitrification activity of the sample was simultaneously evaluated and compared in the microreactor. The results show that the denitration efficiency of the active powder is the best when the mixing ratio of rare earth tailings/rare earth concentrate is 1:1, the denitration rate can reach 82%. In summary, different proportions of optimization are extremely effective methods to improve catalyst performance.
Rocznik
Strony
70--78
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Multi-metal Resources Comprehensive Utilization, Bayan Obo Mine, Inner Mongolia Autonomous Region, Baotou 014010, China
  • School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, China
autor
  • State Key Laboratory of Multi-metal Resources Comprehensive Utilization, Bayan Obo Mine, Inner Mongolia Autonomous Region, Baotou 014010, China
  • School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, China
autor
  • State Key Laboratory of Multi-metal Resources Comprehensive Utilization, Bayan Obo Mine, Inner Mongolia Autonomous Region, Baotou 014010, China
  • School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, China
autor
  • State Key Laboratory of Multi-metal Resources Comprehensive Utilization, Bayan Obo Mine, Inner Mongolia Autonomous Region, Baotou 014010, China
  • School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, China
Bibliografia
  • 1. Yi, T., Zhang, YB., Li, J.W. & Yang, X.G. (2016). Promoting effect of phosphoric acid on the selective catalytic reduction of nitrogen oxides by ruthenium dioxide catalyst[J]. Chinese J. Catal. 37(2), 300–307. DOI: 10.1016/S1872-2067(15)60977-9.
  • 2. Jia, Y.R., Jiang, X.Y. & Zheng, X.M. (2006). Characterization of CuO/Sn0.8Ti0.2O2 Catalyst and Its Activity for NO+CO[J]J. Inorg. Chem. 22(3), 525–532. DOI: 10.3321/j.issn:1001-4861.2006.03.027.
  • 3. Liu, F.D., Shan, W.P. & Shi, X.Y. (2012). Vanadium-based catalyst for selective catalytic reduction of NOx by NH3[J]. Progress 24(4), 445–455. DOI: CNKI:SUN:CHUA.0.2011-07-002.
  • 4. Wang, J.K. & Zhang, X.J. (2018). Research progress of selective catalytic reduction of NOx by Ce-based catalyst NH3[J]. Petrochem. Technol. 25(11), 270. DOI: CNKI:SUN:SHJS.0.2018-11-207.
  • 5. Zeng, X.R., Shen, Y.S. & Li, Y. (2011). Preparation and Selective Catalytic Reduction of NO[J]. Coal Technology. (06), 206–208. DOI: CNKI:SUN:MTJS.0.2011-06-089.
  • 6. Wang, X.B., Wu, S.G., Zou, W.X., Yu, S.H., Gui, K.T. & Lin, D. (2016). Selective catalytic reduction of NO by low temperature NH3 Fe-Mn/Al2O3 catalyst[J]. Chinese. J. Catal. 37(8), 1314–1323. DOI: 10.1016/S1872-2067(15)61115-9.
  • 7. Ma, J.W., Huang, B.C. & Yu, C.L. (2017). Effect of calcination temperature on the performance of Fe2O3/SAPO34 catalyst for selective catalytic reduction of NO at low temperature NH3[J]. J. Environ. Sci. 37(9), 3297–3305. DOI: 10.13671/j.hjkxxb.2017.0100.
  • 8. Xiong, Z.B. & Lu, C.M. (2013). Modifi cation of SCR Denitrification by Iron Oxide Composite Oxide Catalyst[J]. J. Fuel. Chem. 41(3), 361–367. DOI: 10.3969/j.issn.0253-2409.2013.03.016.
  • 9. Zhang, X.L., Wang, D. & Peng, J.S. (2015). Effect of calcination temperature on Mn-modified γ-Fe2O3 catalyst structure and low temperature SCR denitrification activity-[J]. J. Fuel Chem. 43(2), 243–250. DOI: 10.3969/j.issn.0253-2409.2015.02.016.
  • 10. Zhou, F., Xiong, Z.B. & Jin, J. (2018). Effect of calcination temperature on microstructure and denitrification activity of magnetic iron-titanium composite oxides[J]. Chem. Ind. Engin. Progress. (9), 3410–3415. DOI: 10.16085/j.issn.1000-6613.2017-2004.
  • 11. Chen, S.T., Wang, S.J. & Wu, F. (2015). Effect of Metallurgical Industry Waste Residue on Combustion and Denitration of Coal Combustion[J]. COALCONJECTION. 38(2), 83–87. DOI: CNKI:SUN:MTZH.0.2015-02-021.
  • 12. Liu, R., Yu, J. & Yang, C.Q. (2016). Study on performance of denitration catalyst based on metallurgical wasteresidue[J]. Chemica. Engin. Equipment. (3), 7–11. DOI: CNKI:SUN:FJHG.0.2016-03-002.
  • 13. Du, J., Li, G.Y. & Liu, R.L. (2012). Modification of manganese slag and preparation for SCR catalysts[J]. J. Environ. Engin. 006(010), 3762–3766. DOI: CNKI:SUN:HJJZ.0.2012-10-076.
  • 14. Xu, B., Chen, T.H., Liu, H.B., Zhu, C.Z., Chen, D., Zou, X.H. & Jiang, Y. (2016). Preparation of γ-Fe2O3 Catalyst by Heat Treatment of Natural Limonite for Selective Catalytic Reduction of NO by NH3[J]. Huan Jing Ke Xue. 37(7), 2807–2814. DOI: 10.13227/j.hjkx.2016.07.050.
  • 15. Wang, F., Yao, G.H. & Gui, K.T. (2009). Comparative Study on Selective Catalytic Reduction of Flue Gas Denitration Characteristics of Iron-Based Catalysts[J]. Proceedings of the CSEE. 29(29), 47–51. DOI: CNKI:SUN:ZGDC.0.2009-29-011.
  • 16. Wang, L.X., Zhao, P.Z. & Zhu, L. (2017). Mechanism of Alkali Metal (Potassium) PoisoningofIron-Cerium Composite Selective Catalytic Reduction Denitrifi cation Catalyst[J]. Chem. Progress. 36(11), DOI: 10.16085/j.issn.1000-6613.2017-0264.
  • 17. Wu, D.W., Zhang, Q.L. & Lin, T. (2012). Effect of Fe on the Selective Catalytic Reduction of NO by NH3 at Low Temperature over Mn/CeO2-TiO2 Catalyst[J]. J. Inorganic Mater. 27(5), 495–500. DOI: 10.3724/SPJ.1077.2012.00495.
  • 18. Yan, C.Y., Lan, Li. & Chen, S.H. (2012). Preparation of high performance Ce_(0.5)Zr_(0.5)O_2 rare earth oxygen storage material and its supported single Pd three-way catalyst[J]. Chinese J. Catal. V33(2), 336–341. DOI: CNKI:SUN:CHUA.0.2012-02-021.
  • 19. Ma, Y., Li, N. & Wang, Q.W. (2016). Characteristics and research and development status of rareearth resourcesin Bayan Obo Mine[J]. Chinese J. Rare Earth. 34(6), 641–649. DOI: 10.11785/S1000-4343.20160601.
  • 20. Zheng, Q., Bian, X. & Wu, W.Y. (2017). Research on Process Mineralogy of Bayan Obo Rare Earth Tailings [J]. J. Nort. Univ. Natural. Sci. 38(8), 1107–1111. DOI: 10.12068/j.issn.1005-3026.2017.08.010.
  • 21. Jie, L., Meeprasert, J. & Namuangruk, S. (2017). Facet–Activity Relationship of TiO2 in Fe2O3/TiO2 Nanocatalysts for Selective Catalytic Reduction of NO with NH3: In Situ DRIFTs and DFT Studies[J]. J. Phys. Chem. C, 121(9). DOI: 10.1021/acs.jpcc.6b11175.
  • 22. Cao, F., Su, S., Xiang, J., Xiang, J., Wang, P., Hu, S., Sun, L.S. & Zhang, AC. (2015). The activity and mechanism study of Fe-Mn-Ce/gamma-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Fuel. 139, 232–239. DOI: 10.1016/j.fuel.2014.08.060.
  • 23. YAO, Gui, H. & Wang, F. (2010). Low-Temperature De-NOx by Selective Catalytic Reduction BasedonIron-Based Catalysts[J]. Chem. Engin. & Technol. 33(7), 1093–1098. DOI: 10.1002/ceat.201000015.
  • 24. Li, Y., Shen, Y.S. & Zeng, X.R. (2011). Preparation and properties of Ti-Ce-Zr-Ox composited enitration catalyst[J]. Environ. Pollution Control. 33(1), 12–16. DOI: CNKI:SUN:HJWR.0.2011-01-003.
  • 25. Qi, C.X., Chai, Q.Q. & Wang, C.B. (2014). Optimization and Characterization of Preparation Conditions of Mn-Fe-Ce/TiO2 Low Temperature Denitration Catalyst[J]. Chem. Industry Engin. Progress. 33(4), 921–924. DOI: 10.3969/j.issn.1000-6613.2014.04.022.
  • 26. Li, K., Haneda, M. & Ozawa, M. (2013). Oxygen release–absorption properties and structural stability of Ce0.8Fe0.2O2−x[J]. J. Mater. Sci. 48(17), 5733–5743. DOI: 10.1007/s10853-013-7365-y.
  • 27. Yan, D.J. (2015). Effects of preparation conditions on the structure and properties of low temperature NH3-SCR denitration catalyst Mn-Ce/TiO2[J]. Chinese J. Environ. Sci. 35(6), 1697–1702. DOI: 10.13671/j.hjkxxb.2014.0954.
  • 28. Mao, X.B., Du, Q.L. & Yang, D.D. (2014). Preparation of Ceria-based Catalyst and Its Application in Purification of Automobile Exhaust[J]. Sci. Technol. Outlook. (7). DOI: 10.3969/j.issn.1672-8289.2014.07.111.
  • 29. Trudeau, M.L., Tschöpe, A. & Ying, J.Y. (2004). XPS investigation of surface oxidation and reduction in nanocrystalline CexLa1−xO2−y[J]. Surf. Interf. Anal. 23(4) 219–226. DOI: 10.1002/sia.740230405.
  • 30. Fan, J., Wu, X.D. & Liang, Q. (2016). Thermal ageing of Pt on low-surface-area CeO2-ZrO2-La2O3 mixed oxides: Effect on the OSC performance[J]. Appl. Catal. B: Environ. 81(1), 38–48. DOI: 10.1016/j.apcatb.2007.11.022.
  • 31. Dutta, P., Pal, S., Seehra, M. & Shi, Y. (2006). Concentration of Ce3+ and Oxygen Vacancies in Cerium Oxide Nanoparticles[J]. Chem. Mater. 18 (21), 5144–5146. DOI: 10.1021/cm061580n.
  • 32. Chen, J.Y., Zhu, B.Z., Du, T.K., Sun, Y.L., Zhu, Z.C., Yin, S.L. & Dong, Z. (2017). Low-temperature SCR Denitrification Performance of CO Modified Fe_2O_3/AC Catalyst [J]. Nonfer. Metals Engin. 007(002), 99–102. DOI: 10.3969/j.issn.2095-1744.2017.02.019.
  • 33. Li, J., Li, B.W. & Zhang, B.W. (2011). Microwave Carbothermal Reduction of Fe2O3 to Fe3O4 Powder[J]. J. Univ. Sci. Technol. Beijing. 33(9), 1127–1132. DOI: CNKI:11-2520/TF.20110919.1319.015.
  • 34. Yao, X.J., Ma, K.L. & Zou, W.X. (2017). Influence of preparation methods on the physicochemical properties and catalytic performance of MnOx-CeO2 catalysts for NH3-SCR at low temperature[J]. Chinese J. Catal. 038(001), 146–159. DOI: CNKI:SUN:CHUA.0.2017-01-020.
  • 35. Chen, C.M., Cao, Y. & Liu, S.T. (2018). Research progress of modified vanadium-titanium-based SCR catalysts[J]. Chinese J. Catal. (8). DOI: 10.1016/S1872-2067(18)63090-6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a7978a4-9520-4563-b314-773d2e5d8786
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.