PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication and Shape Memory Characteristics of Highly Porous Ti-Nb-Mo Biomaterials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Non-toxic Ti-Nb-Mo scaffolds were fabricated by sintering rapidly solidified alloy fibers for biomedical applications. Microstructure and martensitic transformation behaviors of the porous scaffolds were investigated by means of differential scanning calorimetric and X-ray diffraction. The α″ – β transformation occurs in the as-solidified fiber and the sintered scaffolds. According to the compressive test of the sintered scaffolds with 75% porosity, they exhibit good superelasticity and strain recovery ascribed to the stress-induced martensitic transformation and the shape memory effect. Because of the high porosity of the scaffolds, an elastic modulus of 1.4 GPa, which matches well with that of cancellous bone, could be obtained. The austenite transformation finishing temperature of 77Ti-18Nb-5Mo alloy scaffolds is 5.1°C which is well below the human body temperature, and then all mechanical properties and shape memory effect of the porous 77Ti-18Nb-5Mo scaffolds are applicable for bon replacement implants.
Twórcy
autor
  • Department of Advanced Materials Engineering, Keimyung University, 1000 Shindang-Dong Dalseo-Gu, Daegu 704-701, Korea
  • Department of Advanced Materials Engineering, Keimyung University, 1000 Shindang-Dong Dalseo-Gu, Daegu 704-701, Korea
Bibliografia
  • [1] M. Arciniegas, J.M. Manero, J. Penna, F.J. Gil, J.A. Planell, Metall. Mater. Trans. A 39A, 742 (2008).
  • [2] S. Miyazaki, H.Y. Kim, H. Hosoda, Mater. Sci. Eng. A 438, 18 (2006).
  • [3] Y.Q. Wang, Transactions of Nonferrous Metals Society of China 21, 1074 (2011).
  • [4] I.H. Oh, N. Nomura, N. Masahashi, Scripta Mater. 49, 1197 (2003).
  • [5] G. Ryan, A. Pandit, D.P. Apatsidis, Biomaterials 27, 2651 (2006).
  • [6] M. Niinomi, T. Hottori, K. Morikawa, T. Kasuga, A Suzuki, H. Fukui, S. Niwa, Materials Transactions 43, 2970 (2002).
  • [7] G.E. Ryan, A.S. Pandit, D.P. Apatsidis, Biomaterials 29, 3625 (2008).
  • [8] A. Kelly, H. Nakajima, Materials 2, 790 (2009).
  • [9] F.H. Chen, K.T. Rousche, R.S. Tuan, Nature clinical practice rheumatology 2, 373 (2006).
  • [10] Y. Al-Zain, H.Y. Kim, H. Hosoda, T.H. Nam, Miyazaki, Acta Mater. 58, 4212 (2010).
  • [11] S. Miyazaki, K. Otsuka, Metall. Trans. A 17A, 53 (1986).
  • [12] O. Scalzo, S. Turenne, M. Gauthier, V. Brailovski, Metall. Mater. Trans. A 40A, 2061 (2009).
  • [13] C.O. Kim, J.S. Bae, K.A. Lee, J. Korean Powder Metall. Inst. 22, 93 (2015).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a7951b9-b0b4-4b1d-84fa-b8349ff3ffa3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.