PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic tilt testing of MEMS inclinometers based on conical motions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The MEMS inclinometer integrates a tri-axis accelerometer and a tri-axis gyroscope to solve the perceived dynamic inclinations through a complex data fusion algorithm, which has been widely used in the fields of industrial, aerospace, and monitoring. In order to ensure the validity of the measurement results of MEMS inclinometers, it is necessary to determine their dynamic performance parameters. This study proposes a conical motion-based MEMS inclinometer dynamic testing method, and the motion includes the classical conical motion, the attitude conical motion, and the dual-frequency conical motion. Both the frequency response and drift angle of MEMS inclinometers can be determined. Experimental results show that the conical motions can accelerate the angle drift of MEMS inclinometers, which makes them suitable for dynamic testing of MEMS inclinometers. Additionally, the tilt sensitivity deviation of the MEMS inclinometer by the proposed method and the turntable-based method is less than 0.26 dB. We further provide the research for angle drift and provide discussion.
Rocznik
Strony
31--47
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr., wzory
Twórcy
autor
  • College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
  • National Institute of Metrology of China, Beijing 100013, China
autor
  • College of Electrical Engineering, Guizhou University, Guiyang 550025, China
autor
  • College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
autor
  • National Institute of Metrology of China, Beijing 100013, China
autor
  • Shenyang Aircraft Corporation, Shenyang 110031, China
Bibliografia
  • [1] Shi, Q., Wang, H., He, T., & Lee, C. (2018, July). Self-powered triboelectric inertial sensor ball for IoT and wearable applications. In Journal of Physics: Conference Series (Vol. 1052, No. 1, p. 012030). IOP Publishing. https://doi.org/10.1088/1742-6596/1052/1/012030
  • [2] Setiawan, T., & Cysela, R. Y. (2021, October). Landslide Monitoring using Inclinometer with Micro Electromechanical System (MEMS). In IOP Conference Series: Earth and Environmental Science (Vol. 873, No. 1, p. 012024). IOP Publishing. https://doi.org/10.1088/1755-1315/873/1/012024
  • [3] Yang, M., Liu, Z., Cai, C., Wang, Y., Yang, J., & Yang, J. (2021). Monocular vision-based calibration method for the axial and transverse sensitivities of low-frequency tri-axial vibration sensors with the elliptical orbit excitation. IEEE Transactions on Industrial Electronics, 69(12), 13763-13772. https://doi.org/10.1109/TIE.2021.3130325
  • [4] Gao, T., Sheng, W., Yin, Y., & Du, X. (2021, April). A Transfer Learning Based Unmanned Aerial Vehicle MEMS Inertial Sensors Fault Diagnosis Method. In Journal of Physics: Conference Series (Vol. 1852, No. 4, p. 042084). IOP Publishing. https://doi.org/10.1088/1742-6596/1852/4/042084
  • [5] Li, X., Xiao, W., & Fei, Y. (2015, September). Status quo and developing trend of MEMS-gyroscope technology. In 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC) (pp. 727-730). IEEE. https://doi.org/10.1109/IMCCC.2015.159
  • [6] Liu, S., & Chen, G. (2021, March). Research on Noise Reduction Optimization of MEMS Gyroscope Based on Intelligent Technology. In Journal of Physics: Conference Series (Vol. 1802, No. 2, p. 022017). IOP Publishing. https://doi.org/10.1088/1742-6596/1802/2/022017
  • [7] Lu, J., Liu, X., & Zhang, H. (2018). Tilt measurement using inclinometer based on redundant configuration of MEMS accelerometers. Measurement Science and Technology, 29(5), 055004. https://doi.org/10.1088/1361-6501/aaa504
  • [8] Balek, J., & Klokočník, P. (2021). Development of low-cost inclination sensor based on MEMS accelerometers. IOP Conference Series: Earth and Environmental Science, 906(1), 012057. https://doi.org/10.1088/1755-1315/906/1/012057
  • [9] Łuczak, S. (2014). Dual-Axis Test Rig for Mems Tilt Sensors. Metrology and Measurement Systems, 21(2), 351-362. https://doi.org/https://doi.org/10.2478/mms-2014-0030
  • [10] Chan, L., Yuan, C., & Shi-feng, Z. (2015, May). A new multi-position calibration method for accelerometers of the inertial navigation system. In The 27th Chinese Control and Decision Conference (2015 CCDC) (pp. 6491-6494). IEEE. https://doi.org/10.1109/CCDC.2015.7161989
  • [11] Ye, L., Guo, Y., Dong, L., Yu, H., Nguyen, H., & Su, S. W. (2019). A fast-converge, real-time autocalibration algorithm for triaxial accelerometer. Measurement Science and Technology, 30(6), 065010. https://doi.org/10.1088/1361-6501/ab08c9
  • [12] Liu, H., Luo, W., & Lu, J. (2020). High precision fiber-optic gyroscope resolution test method based on low precision turntable. IEEE Sensors Journal, 20(15), 8656-8662. https://doi.org/10.1109/JSEN.2020.2982982
  • [13] Yang, M., Liu, Z., Wang, Y., Cai, C., & Yang, J. (2022). Monocular vision-based multi-parameter dynamic calibration method used for the low-frequency linear and angular vibration sensors. IEEE Transactions on Industrial Electronics, 70(5), 5365-5374. https://doi.org/10.1109/TIE.2022.3186310
  • [14] Chen, L., Zhou, Y., Zhang, D., Shu, X., & Liu, C. (2019). A dynamic angle metrology system based on fibre-optic gyroscope and rotary table. Metrology and Measurement Systems, 26(3), 497-504. https://doi.org/10.24425/mms.2019.129574
  • [15] Xu, T., Xu, X., Bu, F., Xu, D., & Zhao, H. (2020). Three-position characterization for the adjustment of MEMS accelerometer scale factor. Measurement Science and Technology, 32(3), 035020. https://doi.org/10.1088/1361-6501/abcbce
  • [16] Du, B., Shi, Z., Ding, M., Han, L., & Song, J. (2021). The calibration method for accelerometers in the redundant MEMS inertial navigation system. Measurement Science and Technology, 32(9), 095004. https://doi.org/10.1088/1361-6501/abee52
  • [17] Särkkä, O., Nieminen, T., Suuriniemi, S., & Kettunen, L. (2017). A Multi-Position Calibration Method for Consumer-Grade Accelerometers, Gyroscopes, and Magnetometers to Field Conditions. IEEE Sensors Journal, 17(11), 3470-3481. https://doi.org/10.1109/JSEN.2017.2694488
  • [18] Shang, Z., Ma, X., Li, M., & Liu, Y. (2015). A high-precision calibration method for MEMS gyroscopes. International Journal of Precision Engineering & Manufacturing, 16(8), 1711-1716. https://doi.org/10.1007/s12541-015-0224-9
  • [19] Lu, J., Liang, S., & Yang, Y. (2017). A novel method of calibrating a MEMS inertial reference unit on a turntable under limited working conditions. Measurement Science and Technology, 28(10), 105018. https://doi.org/10.1088/1361-6501/aa8219
  • [20] Lu, J., Liu, X., & Zhang, R. (2019). Calibration, Alignment, and Dynamic Tilt Maintenance Method Based on Vehicular Hybrid Measurement Unit. IEEE Sensors Journal, 19(17), 7243-7253. https://doi.org/10.1109/JSEN.2019.2916067
  • [21] Jafari, M., Sahebjameyan, M., Moshiri, B., & Najafabadi, T. A. (2015). Skew redundant MEMS IMU calibration using a Kalman filter. Measurement Science and Technology, 26(10), 105002. https://doi.org/10.1088/0957-0233/26/10/105002
  • [22] Lu, J., Yang, Y., Li, B., & Liu, M. (2017). Calibration of gyro G-sensitivity coefficients with FOG monitoring on precision centrifuge. Measurement Science and Technology, 28(7), 075103. https://doi.org/10.1088/1361-6501/aa6c8b
  • [23] Wang, J., Deng, Z., Liang, X., & Liu, N. (2020). A MEMS gyroscope high-order calibration method for highly dynamic environments. Measurement Science and Technology, 32(3), 035115. https://doi.org/10.1088/1361-6501/abca55
  • [24] Liu, Z., Cai, C., Yu, M., & Yang, M. (2017). Applying Spatial Orbit Motion to Accelerometer Sensitivity Measurement. IEEE Sensors Journal, 17(14), 4483-4491. https://doi.org/10.1109/JSEN.2017.2703859
  • [25] Cheng, J., Liu, P., Wei, Z., & Luo, G. (2021). A novel MEMS-RIMU self-calibration method based on gravity vector observation. Measurement Science and Technology, 32(5), 055108. https://doi.org/10.1088/1361-6501/abd798
  • [26] Liu, Z., Cai, C., Yang, M., & Zhang, Y. (2019). Testing of a MEMS Dynamic Inclinometer Using the Stewart Platform. Sensors, 19(19), 4233. https://doi.org/10.3390/s19194233
  • [27] Wang, M., Wu, W., & He, X. (2018). Design and evaluation of high-order non-commutativity error compensation algorithm in dynamics. 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), 34-41. https://doi.org/10.1109/PLANS.2018.8373362
  • [28] Wang, M., Wu, W., Wang, J., & Pan, X. (2015). High-order attitude compensation in coning and rotation coexisting environment. IEEE Transactions on Aerospace and Electronic Systems, 51(2), 1178-1190. https://doi.org/10.1109/TAES.2014.140084
  • [29] Zhang, S., Li, X., & Su, Z. (2016). Measuring and solving real coning motion of spinning carriers. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 230(13), 2369-2378. https://doi.org/10.1177/0954410015624720
  • [30] Lee, T., & Kim, K. (2001). Analysis of the two-frequency coning motion with SDINS. AIAA Guidance, Navigation, and Control Conference and Exhibit. https://doi.org/10.2514/6.2001-4108
Uwagi
1. This work was supported in part by National Natural Science Foundation of China (No. 52075512; No. 52265066; No. 62203132); National Key R&D Program of China (No. 2017YFF0205003); Doctor Foundation Project of Guizhou University (No. Guida Renji Hezhi [2020] 30); Youth Science and Technology Talents Development Project of Guizhou Education Department (No. Qianjiaohe KY [2022] 138).
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a77f322-2e4d-41d5-8d20-2b44c97fdf5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.