PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Latest Triassic climate humidification and kaolinite formation (Western Carpathians, Tatric Unit of the Tatra Mts.)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Tomanová Formation, of Rhaetian age, overlying the Norian Carpathian Keuper in the Tatra Mts. is built of cyclic parasequences of mudstones and sandstones. Quartz (15 to 70 wt.%), kaolinite (13 to 46 wt.%) and 2:1 Al dioctahedral phyllosilicates (dioct 2:1: muscovite, illite, illite/smectite: 5 to 39 wt.%) represent the major mineral phase. The kaolinite/dioct 2:1 ratio decreases upwards in the section (from 4.3 to 0.5) and signals variability in weathering/erosion intensity and changing water salinity. Major and trace elements (LILE, HSFS, REE) indicate a uniform source – felsic rocks located probably in the Vindelician Highlands. The sedimentation rate (83 mm/ky) was controlled by climate. Alternation of dry and humid periods is refered by sedimentary textures and by maturity of quartz (aeolian vs. fluvial grains), and organic matter content and composition (Corg and d13Corg). Authigenic siderite or bethierine documents wet and reduced conditions in the upper part of the Tomanová Formation. The sedimention rate of the marine Dudzinec Formation attained 25 mm/ka and the character of cycles preserved in the sequence is similar as that of the Tomanová Formation (fining upwards parasequences). However, the different clay mineralogy, the recycled character of the silicates, the different d13Corg and elevated imput of carbonate detritus with specific C and O isotopic patterns document a discontinuity in the section. The transgressive character of the Dudzinec Fm. was deduced from the stratigraphic distribution and environmental characteristics of the benthic foraminifera present. Involutinids and spirillinids dominate in the lower part, endothyrinids govern the middle part, and in the upper part nodosariids and Ammodiscus-type microfauna occur. These age-diagnostic microfossils indicate a late Rhaetian age. Sea level rise in the Tatric Zone triggered by thermal expansion of the Central Atlantic Rift was gradual, being affected by input of terrestrial clastic sediment both by freshwater and by wind. The Tatric Triassic sequence in the Western Carpathians helps understanding of the development of sedimentation, palaeoclimate (kaolinite weathering), and palaeogeography of the northernmost Tethyan Domain.
Rocznik
Strony
701–--728
Opis fizyczny
Bibliogr. 136 poz., rys., tab., wykr.
Twórcy
  • Comenius University, Department of Economic Geology, Faculty of Science, Mlynská dolina, pav. G, 842 15 Bratislava, Slovakia
autor
  • Geological Institute, Slovak Academy of Sciences, Dúbravská 9, PO Box 106, 840 05 Bratislava, Slovakia Geological
autor
  • Comenius University, Department of Economic Geology, Faculty of Science, Mlynská dolina, pav. G, 842 15 Bratislava, Slovakia
autor
  • Institute, Slovak Academy of Sciences, Ďumbierska 1, 974 01 Banská Bystrica, Slovakia
autor
  • Geological Institute, Slovak Academy of Sciences, Dúbravská 9, PO Box 106, 840 05 Bratislava, Slovakia Geological
Bibliografia
  • 1. Ahlberg A., Andorff L., Guy-Ohlson D. (2002) Onshore climate changes during the Late Triassic marine inundation of the Central European Basin. Terra Nova, 14: 241-248.
  • 2. Ahlberg A., Olsson I., Šimkevičius P. (2003) Triassic-Jurassic weathering and clay mineral dispersal in basement areas and sedimentary basins of southern Sweden. Sedimentary Geology, 161: 15-29.
  • 3. Al-Juboury A.I., Ďurovič V. (1992) Paleoenvironment interpretation of the Carpathian Keuper rocks as revealed by clay mineral analysis. Geologica Carpathica, Clays, 2: 73-76.
  • 4. Andrews J.E. (2006) Palaeoclimate record from stable isotopes in riverine tufas: synthesis and review. Earth-Science Reviews, 75: 85-104.
  • 5. Andrusov D., Bystrický J., Fusán O. (1973) Outlines of the structures of the West Carpathians. Introductory Excursion Guide - book. X Congress of Carpathian-Balkan Geological Association. Geologický ústav Dionýza Štúra, Bratislava.
  • 6. Beerling D.J., Royer D.L. (2002) Fossil plants as indicators of the Phanerozoic global carbon cycle. Annual Reviews of Earth and Planetary Sciences, 30: 527-556.
  • 7. Belcher C.M., Mander L., Rein G., Jervis F.X., Haworth M., Glasspool I.J., Hesselbo S.P., McElwain J.C. (2010) Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nature Geoscience, 3: 426-429.
  • 8. Berner R.A., Beerling D.J. (2007) Volcanic degassing necessary to produce a CaCO3 undersaturated ocean at the Triassic-Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 244: 368-373.
  • 9. Berra F., Jadoul F., Anelli A. (2010) Environmental control on the end of the Dolomia Principale/Hauptdolomit depositional system in the central Alps: Coupling sea-level and climate changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 290: 138-150.
  • 10. Blackburn T.J., Olsen P.E., Bowring S.A., McLean N.M., Kent D.V., Puffer J., McHone G., Rasbury E.T., El-Touhami M. (2013) Zircon U-Pb geochronology links the End-Triassic Extinction with the Central Atlantic Magmatic Province. Science, 340: 941-945.
  • 11. Bonis N.R., Ruhl M., Kürschner W.M. (2010) Milankovitch-scale palynological turnover across the Triassic-Jurassic transition at St. Audrie’s Bay, SW UK. Journal of Geological Society, 167, 877-888.
  • 12. Brański P. (2009) Influence of paleoclimate and the greenhouse effect on Hettangian clay mineral assemblages (Holy Cross Mts area, Polish Basin). Geological Quarterly, 53 (3): 363-368.
  • 13. Bristow T.F., Kennedy M.J., Derkowski A., Droser M.L., Jiang G., Creaser R. (2009) Mineralogical constraints on the paleoenvironments of the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences of the United States of America (PNAS), August 11, 106 (32): 13190-19195.
  • 14. Cerling T.E., Solomon D. K., Quade J., Bowman J.R. (1991) On the isotopic composition of carbon in soil carbon dioxide. Geochimica et Cosmochimica Acta, 55: 3403-3405.
  • 15. Chamley H. (1989) Clay Sedimentology. Springer-Verlag, Berlin, Heidelberg.
  • 16. Condie K.C. (1993) Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104: 1-37.
  • 17. Cohen A.S., Coe A.L. (2007) The impact of the Central Atlantic Mag- matic Province on climate and on the Sr- and Os- isotope evolution in seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 244: 374-390.
  • 18. Császár G., Szinger B., Piros O. (2013) From continental platform towards rifting of the Tisza Unit in the late Triassic to Early Cretaceous. Geologica Carpathica, 64: 279-290.
  • 19. Csontos L., Võrõs A. (2004) Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210: 1-56.
  • 20. Cullers R.L. (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, U.S.A.: implications for provenance and metamorphic studies. Lithos, 51 : 305-327.
  • 21. Dera G., Pelleard P., Neige P., Decomick J-F., Pucéat E., Domergues J.-L. (2009) Distribution of clay minerals in the Early Jurassic Peritethyan sea: Paleoclimatic significance inferred from multiproxy comparison. Palaeogeography, Palaeoclimatology, Palaeoecology, 290: 39-51.
  • 22. Dudek T., Środoń J. (1996) Identification of illite/smectite by X-ray powder diffraction taking into account the lognormal distribution of crystal thickness. Geologica Carpathica - Clays, 5: 21-32.
  • 23. Dumont T., Wieczorek J., Bouillin J.P. (1996) Inverted Mesozoic rift structures in the Polish Western Carpathians (High-Tatra units). Comparison with similar features in the Western Alps. Eclogae Geologicae Helvetiae, 89: 181-202.
  • 24. Eberl D.D. (2003) User's Guide to Rockjock - a program for determining quantitative mineralogy from powder X-ray diffraction data. U.S. Geological Survey Open File Report, 2003: 3-78.
  • 25. Feist-Burkhardt S., Gõtz A., Szulc J., Borkhataria R., Geluk M., Haas J., Hornung J., Jordan P., Kempf G., Michalik J., Nawrocki J., Reinhardt L., Ricken W., Rõhling H.-G., Rüffer T., Tõrõk Á., Zühlke R. ( 2008) Triassic. In: The Geology of Central Europe, 2. Mesozoic and Cenozoic (ed. T. McCann). The Geological Society of London.
  • 26. Fijałkowska A., Uchman A. (1993) New data on the palynology of the Triassic of the Polish Tatra Mts (in Polish with English summary). Przegląd Geologiczny, 41: 373-375.
  • 27. Floyd P.A., Leveridge B.E. (1987) Tectonic environments of the Devo nian mode and geochemical evidence from turbiditic sandstones. Journal of Geological Society, 144: 531-542.
  • 28. Galbarczyk-Gąsiorowska L. (2010) REE mobility in the weathering profile - a case study from the Karkonosze Massif (SW Poland). Acta Geologica Polonica, 60: 599-516.
  • 29. Garcia D., Fontailles M., Moutte J. (1994) Sedimentary fractionations between Al, Ti, Zr and genesis of strongly peraluminous granites. Journal of Geology, 102: 411-422.
  • 30. Gaździcki A.(1974) Rhaetian microfacies, stratigraphy and facial development in the Tatra Mts. Acta Geologica Polonica, 24:17-96.
  • 31. Gaździcki A., Michalik J., Planderová E., Sýkora M. (1979) An Upper Triassic - Lower Jurassic sequence in the Krížna Nappe (West Tatra Mts, Western Carpathians, Czechoslovakia). Západné Karpaty, Geológia, 5: 119-148.
  • 32. Gingele F.X, Müller, P.M., Schneider R.R. (1998) Orbital forc i ng of freshwaer input in the Zaire Fan area - clay mineral evidence from the last 200 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology, 138: 17-26.
  • 33. Gorek A. (1958) Die geologischen Verhaltnisse der Gebirgsgruppe Červené Vrchy, der Taler Tichá und Tomanová. Geologický sborník Slovenskej Akadémie Vied, 9 (2): 203-240.
  • 34. Gotz A.E., Ruckwied K., Barbacka M. (2011) Paleoenvironment of the Late Triassic (Rhaetian) and Early Jurassic (Hettangian) Mecsek Coal Formation (south Hungary): implication from macro and microfloral assemblage. Palaeogeography, Palaeoclimatology, Palaeoecology, 91:75-88.
  • 35. Haas J., Gotz A.E., Pálfy J. (2010) New insight on Late Triassic to early Jurassic paleogeography and eustatic history of the NW Tethyan Realm: implication from sedimentary and organic facies of the Csóvár Basin, Hungary. Palaeogeography, Palaeoclimatology, Palaeoecology, 291: 456-468
  • 36. Haley B.A., Klinkhammer G.P., MacManus J. (2004) Rare earth elements in pore water of marine sediments. Geochimica et Cosmochimica Acta, 68: 1256-1276.
  • 37. Hannigan R.E., Sholkovitz E.R. (2001) Rare earth element chemistry of natural waters: chemical weathering and dissolved REE contents in major river systems. Chemical Geology, 175: 495-508.
  • 38. Hautmann M. (2004) Efect of end-Triassic CO2 maxi mum on carbonate sedimentation and marine mass extinction. Facies, 50: 257-261.
  • 39. Hesselbo S.P., Robinson S.A., Surlyk F., Piasecki S. (2002) Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: a link to initiation of massive volcanism? Geology, 30: 251-254.
  • 40. Heimhofer U., Adatte T., Hochuli P.A., Burla S., Weissert H. (2008) Coastal sediments from the Algarve: low-latitude climate archive for Aptian-Albian. International Journal of Earth Sciences, 97: 785-797.
  • 41. Hillier S. (1994) Pore-limng chlorites in siliciclastic reservoir sandstones: electron microprobe, SEM and XRD data, and implications for their origin. Clay Minerals, 29: 665-679.
  • 42. Honty M., Clauer N., Šucha V. (2008) Rare-earth elemental systematics of mixed-layered illite-smectite from sedimentary and hydrotherme environments of the Western Carpathians (Slovakia). Chemical Geology, 249: 167-190.
  • 43. Hornibrook E.R.C., Longstaffe F.J. (1996) Berthierine from the lower Cretaceous Clearwater formation, Alberta, Canada. Clays and Clay Minerals, 44: 1-21.
  • 44. Hori R.S., Fujiki T., Inoue E., Kimura J.I. (2007) Platinum group element anomalies and bioevents in the Triassic-Jurassic deep-sea sediments of Panthalassa. Palaeogeography, Palaeoclimatology, Palaeoecology, 244: 391-406.
  • 45. Huynh T.T., Poulsen C.J. (2005) Rising atmospheric CO2 as a possible trigger for the end-Triassic mass extincion. Palaeogeography, Palaeoclimatology, Palaeoecology, 217: 1-21.
  • 46. Jaglarz P. (2010) Facies and sedimentary environment of the carbonate-dom i nated Carpathian Keuper from the Tatricum domain: Results from the Dolina Smytnia Valley (Tatra Mts., Southern Poland). Annales Societatis Geologorum Poloniae, 80: 147-161.
  • 47. Jaglarz P., Szulc J. (2003) Middle Triassic evolution of the Tatricum sedimentary basin: An attempt of sequence stratigraphy to the Wierchowa Unit in the Polish Tatra Mountains. Annales Societatis Geologorum Poloniae, 73: 169-182.
  • 48. Jorissen F.J., Stigter H.C. de, Widmark J.G.V. (1995) A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology, 26: 3-15.
  • 49. Kisch H.J. (1983) Mineralogy and pe- rology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks. Developments in Sedimentology, 25B: 289-493.
  • 50. Kotański Z. (1959) Stratigraphy, sedimentology and paleogeography of the high-Tatric Triassic in the Tatra Mts. Acta Geologica Polonica, 9: 113-145.
  • 51. Kotański Z. (1961) Tectogénèse et reconstitution de la paléogéographie de la zone haut-tatrique dans les Tatras (in Polish with French summary). Acta Geologica Polonica, 11: 187-476.
  • 52. Kotański Z. (1979) The posi- ion of the Tatra Mts. in the western Carpathians (in Polish with English summary). Przegląd Geologiczny, 27: 359-369.
  • 53. Kozur H. (1991) The evolution of Meliata-Hallstatt Ocean and its significance for early evoltuion of the Eastern Alps and Western Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology, 8: 109-135.
  • 54. Kraus I. (1989) Kaolins and kaolinite clays (in Slovak). Západné Karpaty, séria Mineralógia, Petrografia, Geochémia, Metalogenéza, 13: 7-287.
  • 55. Kuerschner W.M., Bonis N.R., Krystyn L. (2007) Carbon-isotope stratigraphy and palynostratigraphy of the Triassic-Jurassic transition in the Tiefengraben section - Northern Calcareous Alps (Austria). Palaeogeography, Palaeoclimatology, Palaeoecology, 244: 257-280.
  • 56. Lanson B., Beaufort D., Berger G., Bauer A., Cassagnabére Meunier A. (2001) Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Minerals, 37: 1-22.
  • 57. Lefeld J., Gaździcki A., Iwanow A., Krajewski K., Wójcik K. (1985) Jurassic and Cretaceous lithostratigraphic units of the Tatra Mountains. Studia Geologica Polonica, 84: 3-93.
  • 58. Lucas S.G., Tanner L.H. (2007) Tetrapod biostratigraphy and biochronology of the Triassic-Jurassic transition on the southern Colorado Plateau, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 244: 242-256.
  • 59. Lund J.J. (1977) Rhaetic to Lower Liassic palynology of the onshore south-eastern North Sea Basin. Danmarks Geologiske Undersøgelse, 2nd Series, 109: 1-129.
  • 60. MacRae N.D., Nesbitt H.W., Kronberg B.I. (1992) Development of a positive Eu anomaly during diagenesis. Earth and Planetary Science Letters, 109: 585-591.
  • 61. Mahel’ M., ed. (1966) Regional Geology of Czechoslovakia II, Western Carpathians, pt. 1. Academia Praha.
  • 62. McElwain J.C., Punyasena S.W. (2007) Mass extinction events and the plant fossil record. Trends in Ecology and Evolution, 22: 10-11.
  • 63. McElwain J.C., Popa M.E., Hesselbo S.P., Haworth M., Surlyk F. (2007) Macroecological re sponse of ter res trial veg e ta tion to climatic and atmospheric change across the Triassic/Jurassic Boundary in East Greenland. Paleobiology, 33: 547-573.
  • 64. McElwain J.C., Wagner P.J., Hesselbo S.P. (2009) Fossil plant relative abundance indicate sudden loss of Late Triassic biodiversity in East Green- and. Science, 324: 1554-1556.
  • 65. McLennan S.M. (1993) Weather- ng and global denudation. Journal of Geology, 101: 295-303.
  • 66. McLennan S.M., Hemming S., McDaniel D.K., Hanson G.N. (1993) Geochemical approaches to sedimentation, provenance and tectonics. GSA Special Paper, 248: 21-40.
  • 67. McRoberts C.A. (1994) The Triassic-Jurassic ecostratigraphic transition in the Lombardian Alps, Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 110: 145-166.
  • 68. McRoberts C.A., Furrer H., Jones D.S. (1997) Palaeoenvironmental interpretation of a Triassic-Jurassic boundary section from Western Austria based on palaeoecological and geochemical data. Palaeogeography, Palaeoclimatology, Palaeo ec ol ogy, 136: 79-95.
  • 69. Michalik J. (1977) Palaogeographische Untersuchungen der Fatra Schichten (Kossen Formation) der nordlichen Teiles des Fatrikums in der Westkarpaten. Geologický zborník Geologica Carpathica, 28: 71-94,
  • 70. Michalik J. (1993) Mesozoic tensional bas i ns in the Alpine-Carpathian shelf. Acta Geologica Hungarica, 36: 395-403.
  • 71. Michalik J. (1994) Notes on the paleogeography and paleotectonics of the Western Carpathian area duri ng the Mesozoic. Mitteilungen der Osterreichischen Geologischen Gesellschaft, 86: 101-110.
  • 72. Michalik J. (2007) Sedimentary rock record and microfacies indicators of the latest Triassic to mid-Cretaceous tensional development of the Zliechov Basin (Central Western Carpathians). Geologica Carpathica, 58: 443-453.
  • 73. Michalik J. (2011) Mesozoic paleogeography and facies distribution in the Northern Mediterranean Tethys from Western Carpathians view. Iranian Journal of Earth Sciences, 3: 185-193.
  • 74. Michalik J., ed. (2003) Triassic/Jurassic Boundary Events. Special Volume to the 3th Annual Workshop of the 458 (TRIBE) IGCP UNESCO Project, Stará Lesná, October 2003, VEDA Bratislava.
  • 75. Michalik J., Planderová E., Sýkora M. (1976) To the stratigraphic and paleogeographic position of the Tomanová Formation in the uppermost Triassic of the West Carpathians. Geologický Zborník Geologica Carpathica, 27: 299-318.
  • 76. Michalik J., Kátlovský V., Hluštik A. (1988) Plant remains in the Tomanová Formation (uppermost Triassic, West Carpathians): their origin, composition and diagenetic alteration. Geologický Zborník Geologica Carpathica, 39: 523-537.
  • 77. Michalik J., Lintnerová O., Gaździcki A., Soták J. (2007) Record of environmental changes in the Triassic-Jurassic boundary interval in the Zliechov Basin, Western Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology, 244: 71-88.
  • 78. Michalik J., Biroò A., Lintnerová O., Gotz A.E., Ruckwied K. (2010) Climatic change at the T/J boundary in the NW Tethyan Realm (Tatra Mts, Slovakia). Acta Geologica Polonica, 60: 535-548.
  • 79. Michalik J., Lintnerová O., Wójcik-Tabol P., Gaździcki A., Grabowski J., Golej M., Šimo V., Zahradniková B. (2013) Paleoenvironments duri ng the Rhaetian transgression and the colonization history of marine biota in the Fatric Unit (Western Carpathians). Geologica Carpathica, 64: 39-62.
  • 80. Mongelli G., Critelli S., Perri F., Sonnino M., Perrone V. (2006) Sedimentary recycling, provenance and paleoweathering from chemistry and mineralogy of Mesozoic continental redbed mudrocks, Peloritani Mts, southern Italy. Chemical Journal, 40: 197-209.
  • 81. Moore D.M., Reynolds R.C. Jr. (1997) X-Ray diftraction and the identification and analysis of clay minerals, second edition. Oxford University Press, USA.
  • 82. Morad S., Ketzer J.M., Ros L.F. de (2000) Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implication for mass transfer in sedimentary basins. Sedimentology, 47: 95-120.
  • 83. Murray R.W., Buchholtz ten Brink M.R., Gerlach D.C., Russ G.R. III., Jones D.L. (1992) Interoceanic variation in the rare earth, major and trace element depositional chemistry of cherts: Perspective gained from DSDP and ODP record. Geochimica et Cosmochimica Acta, 56: 1897-1913.
  • 84. Nagy J., Hess S., Alve E. (2010) Environmental significance of foraminiferal assemblages dominated by small-sized Ammo- discus and Trochammina in Triassic and Jutassic delta-intlut enced deposits. Earth-Science Reviews, 99: 31-49.
  • 85. Nagy J., Hess S., Dypvik H., Bjćrke T. (2011) Marine shelf to paralic biofacies of Upper Triassic to Lower Jurassic depositsin Spitsbergen. Palaeogeography, Palaeoclimatology, Palaeoecology, 300: 138-151.
  • 86. Nesbitt H.W., Markovics G. (1997) Weatheri ng of the granodioritic crust, long-term storage in the weathering profiles and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta, 61: 1653-1670.
  • 87. Nesbitt H.W., Young G.M. (1984) Predict ion of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic consideration. Geochimica et Cosmochimica Acta, 48: 1523-1534.
  • 88. Nesbitt H.V., McRae N.D., Kronberg B.I. (1990) Amazon deep-sea muds: light REE enriched products of extreme chemical weathering. Earth and Planetary Science Letters, 100: 18-123.
  • 89. Niedźwiedzki G. (2005) A new find of dinosaur footprints in the Upper Triassic of the Tatra Mountains, southern Poland (in Polish with English summary). Przegląd Geologiczny, 53: 410-413.
  • 90. Niedźwiedzki G. (2011) A Late Triassic dinosaur-dominated ichnofauna from the Tomanová Formation of theTatra Mts, central Europe. Acta Palaeontologica Polonica, 58: 291-300.
  • 91. Odin G.S., Knox R.W., Gygi R.A., Guerrak S. (1988) Green marine clays from the oolitic ironstone facies: habit, mineralogy, environment. Developments in Sedimentology, 45: 29-52.
  • 92. Ohta T., Arai H. (2007) Statistical empirical index of chemical weathering in igneous rocks: A new tool for evaluating the degree of weathering. Chemical Geology, 240: 280-297.
  • 93. Olóriz F., Reolid M., Rodriguez-Tovar F.J. (2003) Palaeogeographic and stratigraphic distribution of mid-late Oxfordian foraminiferal assemblages in the Prebetic Zone. Geobios, 36: 733-747.
  • 94. Ounis A., Koczis L., Chaabani F., Pfeifer H.R. (2008) Rare earth elements and stable isotope geochemistry (S13C and S18O) of phosphorite deposits in the Gafsa Basin, Tunisia. Palaeogeography, Palaeoclimatology, Palaeoecology, 268: 1-18.
  • 95. Pálfy J., Demény A., Haas J., Hetényi M., Orchard M.J., Veto I. (2001) Carbon isotope anomaly and other geochemical changes at the Triassic/Jurassic boundary from a marine section in Hungary. Geology, 29: 1047-1050.
  • 96. Petersen H.I., Lindstom S. (2012) Synchronous wildfire activity rise and mire deforestation at the Triassic-Jurassic boundary. Plos One, 7 (10): 1-15.
  • 97. Pollastro R.M. (1993) Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays and Clay Minerals, 41: 119-133.
  • 98. Preto N., Kustatscher E., Wignall P.B. (2010) Triassic climate - state of the art and the perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 290: 1-10.
  • 99. Price J.R., Velbel M. (2003) Chemical weathering indices applied to weathering profiles developed on heterogenous felsic metamor- phic parent rocks. Chemical Geology, 202: 397-416.
  • 100. Prochnow S.J, Nordt L.C., Atchley S.C., Hudec M.R. (2006) Multi-proxy paleosol evidence for middle and late Triassic climate trends in eastern Utah. Palaeogeography, Palaeoclimatt ology, Palaeoecology, 232: 53-72.
  • 101. Rabowski F. (1959) Tatric series in western Tatra Mts. (in Polish). Prace Instytutu Geologicznego, 27: 5-178.
  • 102. Raciborski M. (1890) Rhaetic flora in the Tatra Mts. (in Polish) Rozprawy Wydziału Matematyczno-Przyrodniczego, Akademia Umiejętności Kraków, 21: 243-260.
  • 103. Radwański A. (1968) Petrographical and sedimentological study of the high-Tatric Rhaetic in the Tatra Mts. (in Polish with English summary). Studia Geologica Polonica, 25: 1-146
  • 104. Reolid M., Martinez-Ruiz F. (2012) Comparison of benthic foraminifera and geochemical proxies in shelf deposits from the Upper Jurassic of Prebetic (southern Spain). Journal of Iberian Geology, 38: 449-465.
  • 105. Reolid M., Nagy J., Rodriguez-Tovar F., Olóriz F. (2008) Foraminiferal assemblages as palaeoenvironmental bioindicators in Late Jutassic epicontinental platforms: relation with trophic conditions. Acta Palaeontologica Polonica, 53: 705-722.
  • 106. Retallack J.G. (2009) Refining and pedogenic carbonate CO2 paleobarometer to quantify a Middle Miocene greenhouse spike. Palaeogeography, Palaeoclimatology, Palaeoecology, 281: 57-65.
  • 107. Righi D., Meunier A. (1995) Origin of clays by rock weathering and soil formation. In: Velde B. (ed.): Origin and Mineralogy of Clays. Springer, 43-161.
  • 108. Ruckwied K., Gotz A.E. (2009) Climate change at the Triassic/Jurassic boundary: Palynological evidence from the Furkaska section (Tatra Mountains, Slovakia). Geologica Carpathica, 60: 139-149.
  • 109. Ruckwied K., Gotz A.E., Pálfy J., Torok Á. (2008) Palynology of a terrestrial coal-bearing series across the Triassic/Jurassic boundary (Mecsek Mts, Hungary). Central European Geology, 51 : 1-15.
  • 110. Ruffell A., McKinley J.M., Worden R.H. (2002) Comparison of clay mineral stratigraphy to other palaeoclimate indicators in the Mesozoic of NW Europe. Philosophical Transaction of the Royal Society of London, A 360: 675-693.
  • 111. Ruhl M., Veld H. W.M., Kürschner W.M. (2010) Sedimentary organic matter characterization of the Triassic-Jurassic boundary GSSP at Kuhjoch (AustriaJ. Earth and Planetary Science Letters, 292: 17-26.
  • 112. Ruhl M., Bonis N.R., Reichart G.J., Damsté J.S.S., Kürschner W.M. (2011) Atmospheric carbon injection linked to end-Triassic mass extinction. Science, 333: 430-434.
  • 113. Rychliński T. (2008) Facies development and sedimentary environments of the Carpathian Keuper deposits from the Tatra Mts., Poland and Slovakia. Annales Societatis Geologorum Poloniae, 78: 1-18.
  • 114. Schulte P., Geldern R. van, Freitag H., Karim A., Petelet-Giraud P.N.E., Probst A., Probst J.L., Telmer K., Veizer J., Barth J.A.B. (2011) Applications of stable water and carbon isotopes in watershed research: Weathering, carbon cycling, and water balances. Earth-Science Reviews, 109: 20-31.
  • 115. Sha J., Vajda V., Pan Y., Larsson L., Yao X., Zhang X., Wang Y., Cheng X., Jiang B., Deng Sh., Chen S., Peng B. (2011) Stratigraphy of the Triassic-Jurassic succession of the S margin of the Junggar Basin, NW China. Acta Geologica Sinica, 85: 421-436.
  • 116. Sheldon N.D., Tabor N.J. (2009) Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews, 95: 1-52.
  • 117. Shields G., Webb G.E. (2004) Has the REE composition of seawater changed over geological time? Chemical Geology, 204: 103-107.
  • 118. Shutov V.D., Aleksandrova A.V., Losievskaya S.A. (1970) Genetic interpretation of the polymorphism of the kaolinite group in sedimentary rocks. Sedimentology, 15: 69-82.
  • 119. Smith J.R., Giegengack R., Schwarcz H.P. (2004) Constraints on Pleistocene pluvial climates through stable-isotope analysis of fossil spring tufas and associated gastropods, Kharga Oasis, Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology, 206: 157-175.
  • 120. Środoń J., Eberl D.D. (1984) Reviews in Mineralogy, 13: 495-544.
  • 121. Środoń J., Drits V.A., McCarty D.K., Hsieh J.C.C., Eberl D.D. (2001) Quantitative X-ray diffraction analysis of clay-bearing rocks from random prepara-ions. Clays and Clay Minerals, 49: 514-528.
  • 122. Środoń J., Kotarba M., Biron A., Such P., Clauer N., Wójtowicz A. (2006) Diagenetic history of the Podhale-Orava Basin and the underlying Tatra sedimentary structural units (Western Carpathians): Ev i dence from XRD and K-Ar of illite-smectite. Clay Minerals, 41: 751-774.
  • 123. Stampfli G.M., Mosar J., Bono A. de, Vavasis I. (1998) Late Paleozoic, early Mesozoic plate tectonics of the Western Tethys. Bulletin of the Geolog i cal Society of Greece, 31: 113-120.
  • 124. Šucha V., Środoń J., Zatkaliková V., Franců J. (1991) Mixed layered illite/smectite: separation, identification, use (in Slovak with English abstract). Mineralia Slovaca, 23: 267-274.
  • 125. Šucha V., Kraus I., Gerthofferová H., Peteš J., Sereková M. (1993) Smectite to illite conversion in bentonites and shales ofthe East Slovak basin. Clay Minerals, 28: 243-253.
  • 126. Taylor S.R. McLennan S.M. (1985) The Continental Crust: its Composition and Evolution. Blackwell Oxford.
  • 127. Tyszka J. (1994) Response of Middle Jurassic benthic foraminiferal morphogroups to dysoxic/anoxic conditions in the Pieniny Klippen Basin, Polish Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology, 110: 55-81.
  • 128. Tyszka J. (2001) Microfossil assemblages as bathymetric indicators of the Toarcian/Aalenian „Fleckenmergel“ facies in the Carpathian Pieniny Klippen Belt. Geologica Carpathica, 52: 147-158.
  • 129. Uhlig V. (1897) Geologie der Tatragebirges I. Einleitung und der stratigraphisches Theil. Anzeiger der Akademische Wissenschaften, Mathematisch-Naturwissenschafliche Klasse, 64: 643-684.
  • 130. Vďaěný M., Vozárová A., Vozár J. (2013) Geochemistry of the Permian sandstone from the Malužiná Format ion in the Malé Karpaty Mts (Hronic Unit, Western Carpathians, Slovakia). Geologica Carpathica, 64: 23-38.
  • 131. Ward P.D., Garrison G.H., Haggart J.W., Kring D.A., Beattie M.J. (2004) Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic/Jurassic mass extinction. Earth and Planetary Science Letters, 224: 589-600.
  • 132. Ward P.D., Garrison G.H., Williford K.H., Kring K.H., Goodwin D., Beat tie M., McRoberts C. (2007) The organic carbon isotopic and paleontological record across the Triassic-Jurassic boundary at the candidate GSSP section at Fergusson Hill, Muller Canyon, Nevada, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 244: 281-289
  • 133. Weaver C.E. (1989) Clays, Muds, and Shales. Elsevier, Developments in Sedimentology, 44: 1-819.
  • 134. White T., Gonza i ez L., Ludvigson G., Poulsen C. (2001) Middle Cretaceous greenhouse hydrologic cycle of North America. Geology, 29: 363-366.
  • 135. Zajzon N., Kristály F., Pálfy J., Németh T. (2012) Detailed clay mineralogy of the Triassic-Jurassic boundary section at Kendelbachgraben (Northern Calcareous Alps, Austria). Clay Minerals, 47: 177-189.
  • 136. Ziegler P.A. (1980) Northwestern Europe: subsidence patterns of Post-Variscan Basins. Mémoires BRGM, 108: 249-280.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a76c6b0-12fb-4f46-99bb-3b845eb9ee47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.