Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a comparison of the fatigue life curves based on test of 15Mo3 steel under cyclic, pendulum bending and tension-compression. These studies were analyzed in terms of a large and small number of cycles where strain amplitude is dependent on the fatigue life. It has been shown that commonly used Manson-Coffin-Basquin model cannot be used for tests under cyclic bending due to the impossibility of separating elastic and plastic strains. For this purpose, some well-known models of Langer and Kandil and one new model of authors, where strain amplitude is dependent on the number of cycles, were proposed. Comparing the results of bending with tension-compression it was shown that for smaller strain amplitudes the fatigue life for both test methods were similar, for higher strain amplitudes fatigue life for bending tests was greater than for tension-compression.
Czasopismo
Rocznik
Tom
Strony
62--65
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, Department of Mechanics and Machine Design, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
autor
- Faculty of Mechanical Engineering, Department of Mechanics and Machine Design, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
autor
- Faculty of Mechanical Engineering, Department of Mechanics and Machine Design, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
autor
- Faculty of Mechanical Engineering, Department of Mechanics and Machine Design, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
autor
- Faculty of Mechanical Engineering, Department of Mechanics and Machine Design, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
Bibliografia
- 1. Achtelik H., Lachowicz C., Łagoda T., Macha E. (1997), Life time of the notched specimens of 10HNAP steel under proportional bending with torsion, Proceedings and presented in 1st annual fatigue group meeting of Copernicus Contract CIPA, Smolenice, 60-69.
- 2. Basan R., Franulović M., Prebil I., Črnjarić-Žic N. (2011), Analysis of strain-life fatigue parameters and behaviour of different groups of metallic materials, International Journal of Fatigue, 33, 484-491.
- 3. Boller C., Seeger T. (1987), Materials Data for Cyclic Loading, Materials Science, Monographs, 42, Elsevier Publisher.
- 4. Chopra O.K. (1998), Effects of LWR coolant environments of fatigue design curves of austenitic stainless steels, U.S. Nuclear Regulatory Commission, NUREG/CR-5704, ANL-98/31.
- 5. Gorash Y., Chen H. (2013), On creep-fatigue endurance of TIGdressed weldments using the linear matching method, Enineering Failure Analysis, 34, 308-323.
- 6. Kandil F.A. (2000), The Determination of Uncertainties in Low Cycle Fatigue Testing, Standards Measurement & Testing Project No. SMT4-CT97-2165, 1, 1-26.
- 7. Karolczuk A., Kurek M., Łagoda T. (2015), Fatigue life of aluminium alloy 6082 T6 under constant and variable amplitude bending with torsion, J. of Theoretical and Aookied Mechanics, 53(2), 521-430.
- 8. Krzyżak D., Kurek M., Łagoda T. Sówka D. (2014), Influence of changes of the bending plane position on the fatigue life, Materialwissenschaft und Werkstofftechnik, 45(11), 1018-1029.
- 9. Kurek A., Kulesa A., Łagoda T. (2015), Stress-life curve for a range of low and high number of cycles (in Polish), 54. Sympozjon „Modelowanie w Mechanice”, 87-88.
- 10. Langer B.F. (1962), Design of Pressure Vessels for Low-Cycle Fatigue, ASME Journal of Basic Engineering, 84, 389-402.
- 11. Lee K. S., Song J. H. (2006), Estimation methods for strain-life fatigue properties from hardness, International Journal of Fatigue, 28, 386-400.
- 12. Manson S.S (1979), Inversion of the strain-life and strain-stress relationships for use in metal fatigue analysis, Fatigue of Engineering Matarials and Structures, 1, 37-57.
- 13. Manson S.S. (1965), Fatigue: A complex subject-some simple approximations, Experimental Mechanics, 5(4), 193-226.
- 14. Manson S.S., Muralidharan U. (1987) Fatigue life prediction in bending from axial fatigue information, Fatigue & Fracture Engineering Materials & Structures, 9(5), 357-372.
- 15. Marcisz E., Niesłony A., Łagoda T. (2012), Concept of fatigue for determining characteristics of materials with strengthening, Material Science Forum, 726, 43-48.
- 16. Megahed M.M. (1990), Prediction of bending fatigue behaviour by the reference stress approach, Fatigue & Fracture of Engineering Materials & Structures, 13(4), 361-374.
- 17. Niesłony A., el Dsoki C., Kaufmann H., Krug P. (2008), New method for evaluation of the Manson–Coffin–Basquin and Ramberg– Osgood equations with respect to compatibility, International Journal of Fatigue, 30, 1967-1977 .
- 18. Niesłony A., Kurek A., EL Dsoki Ch., Kaufmann H. (2012), A Study of Compatibility Between two ical Fatigue Curve Models based on Some Selected Structural Materials, International Journal of Fatigue, 39, 88-94.
- 19. Radhakrishnan V.M. (1992), On bilinearity of Manson-Coffin lowcycle-fatigue relationship, NASA Technical Memorandum 105840, NASA-TM-105840, E-7283, NAS 1.15:105840 ,11.
- 20. Shul’ginov B. S. (2008), Determination of parameters of an exponential function in the description of a fatigue curve, Strength of Materials, 50(3), 343-349.
- 21. Troschenko V. (1996), High-cycle fatigue and Inelasticity of Metals, Multiaxial and Fatigue Design, ESIS 21, (Edited by A. Pinueau, G. Cailletaud and T. C .Lindley), Mechanical Engineering Publications, London, 335-348.
- 22. Walat K., Łagoda T., Kurek M. (2015), Life time assessment for and aluminium alloy under complex low cycle fatigue loadings, Materials Testing, 57, 160-164.
- 23. Zhao Y. X., Yang B., Zhai Z. Y. (2007), The framework for a strainbased fatigue reliability analysis, International Journal of Fatigue, 30, 493-501.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a708f5c-21a9-494e-bc33-b2affcefaeec