Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Solar panels in enclosed areas are prone to suboptimal absorption of sunlight due to unstable sunshine. Two methods to optimize solar panel efficiency are available: dynamic and static. The dynamic method involves moving the panels towards the sun to maximize solar irradiation, while the static method uses a power converter to find the maximum power point. This research evaluates the performance of the MPPT system, which uses the P&O method with PSO, on solar panels. The objective is to determine the most appropriate MPPT algorithm to optimize the efficiency of solar panels. The MPPT system's efficiency is tested under partial shading conditions of 100 w/m2, 300 w/m2, and 500 w/m2. The system's output is evaluated based on the highest efficiency parameter value. The efficiency of the P&O and PSO methods is compared, and the most optimal efficiency is determined. The MPPT system is designed to measure parameters that are demonstrated qualitatively.
Rocznik
Tom
Strony
1023--1029
Opis fizyczny
Bibliog. 26 poz., rys., tab.
Twórcy
- Universitas Mercu Buana
autor
- Universitas Bengkulu
autor
- PLN Indonesia
autor
- Universitas Mercu Buana, Indonesia
Bibliografia
- [1] M. Alagu, P. Ponnusamy, S. Pandarinathan, and J. S. Mohamed Ali, “Performance improvement of solar PV power conversion system through low duty cycle DC‐DC converter,” International Journal of Circuit Theory and Applications, vol. 49, no. 2, pp. 267-282, 2021. https://doi.org/10.1002/cta.2918
- [2] A. Rajavel and N. Rathina Prabha, “Fuzzy logic controller-based boost and buck-boost converter for maximum power point tracking in solar system,” Transactions of the Institute of Measurement and Control, vol. 43, no. 4, pp. 945-957, 2021. https://doi.org/10.1177/0142331220938211
- [3] A. Charaabi, O. Barambones, A. Zaidi, and N. Zanzouri, “A novel two stage controller for a DC-DC boost converter to harvest maximum energy from the PV power generation,” in Actuators, MDPI, 2020, p. 29. https://doi.org/10.3390/act9020029
- [4] K. Ananda-Rao, Y. Matar, N. H. Baharudin, M. A. Ismail, and A. M. Abdullah, “Design of MPPT charge controller using zeta converter for battery integrated with solar Photovoltaic (PV) system,” in Journal of Physics: Conference Series, IOP Publishing, 2020, p. 012058. https://doi.org/10.1088/1742-6596/1432/1/012058
- [5] P. K. Atri, P. S. Modi, and N. S. Gujar, “Comparison of different MPPT control strategies for solar charge controller,” in 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), IEEE, 2020, pp. 65-69 https://doi.org/10.1109/PARC49193.2020.236559
- [6] C. Lapsongphon and S. Nualyai, “A comparison of MPPT solar charge controller techniques: a case for charging rate of battery,” in 2021 Research, Invention, and Innovation Congress: Innovation Electricals and Electronics (RI2C), IEEE, 2021, pp. 278-281. https://doi.org/10.1109/RI2C51727.2021.9559787
- [7] A. F. Mirza, M. Mansoor, Q. Ling, B. Yin, and M. Y. Javed, “A Salp-Swarm Optimization based MPPT technique for harvesting maximum energy from PV systems under partial shading conditions,” Energy Convers Manag, vol. 209, p. 112625, 2020. https://doi.org/10.1016/j.enconman.2020.112625
- [8] W. Hayder, A. Abid, M. Ben Hamed, and L. Sbita, “MPPT based on P &O method under partially shading,” in 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD), IEEE, 2020, pp. 538-542. https://doi.org/10.1109/SSD49366.2020.9364107
- [9] M. Joisher, D. Singh, S. Taheri, D. R. Espinoza-Trejo, E.Pouresmaeil, and H. Taheri, “A hybrid evolutionary-based MPPT for photovoltaic systems under partial shading conditions,” IEEE Access, vol. 8, pp. 38481-38492, 2020. https://doi.org/10.1109/ACCESS.2020.2975742
- [10] A. M. Eltamaly, H. M. H. Farh, and A. G. Abokhalil, “A novel PSO strategy for improving dynamic change partial shading photovoltaic maximum power point tracker,” Energy sources, part a: recovery, utilization, and environmental effects, pp. 1-15, 2020. https://doi.org/10.1080/15567036.2020.1769774
- [11] J. Farzaneh, R. Keypour, and A. Karsaz, “A novel fast maximum power point tracking for a PV system using hybrid PSO-ANFIS algorithm under partial shading conditions,” International Journal of Industrial Electronics Control and Optimization, vol. 2, no. 1, pp. 47-58, 2019. https://doi.org/10.22111/IECO.2018.25721.1056
- [12] N. Shankar and N. SaravanaKumar, “Reduced partial shading effect in multiple PV array configuration model using MPPT based enhanced particle swarm optimization technique,” Microprocess Microsyst, p. 103287, 2020. https://doi.org/10.1016/j.micpro.2020.103287
- [13] A. Mohapatra, B. Nayak, and C. Saiprakash, “Adaptive perturb & observe MPPT for PV system with experimental validation,” in 2019 IEEE International Conference on Sustainable Energy Technologies and Systems (ICSETS), IEEE, 2019, pp. 257-261. https://doi.org/10.1109/ICSETS.2019.8744819
- [14] A. F. Mirza, Q. Ling, M. Y. Javed, and M. Mansoor, “Novel MPPT techniques for photovoltaic systems under uniform irradiance and Partial shading,” Solar Energy, vol. 184, pp. 628-648, 2019.
- [15] M. Joisher, D. Singh, S. Taheri, D. R. Espinoza-Trejo, E. Pouresmaeil, and H. Taheri, “A hybrid evolutionary-based MPPT for photovoltaic systems under partial shading conditions,” IEEE Access, vol. 8, pp. 38481-38492, 2020. https://doi.org/10.1109/ACCESS.2020.2975742
- [16] H. Li, D. Yang, W. Su, J. Lü, and X. Yu, “An overall distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading,” IEEE Transactions on Industrial Electronics, vol. 66, no. 1, pp. 265-275, 2018. https://doi.org/10.1109/TIE.2018.2829668
- [17] P. S. Acharya and P. S. Aithal, “A Comparative Study of MPPT and PWM Solar Charge Controllers and their Integrated System,” in Journal of Physics: Conference Series, IOP Publishing, 2020, p. 012023. https://doi.org/10.1088/1742-6596/1712/1/012023
- [18] B. Dwinanto, “MPPT PV Modeling with ANN Using Matlab Simulink,” Eduvest-Journal of Universal Studies, vol. 2, no. 8, pp. 1-609, 2022. https://doi.org/10.36418/eduvest.v2i8.554
- [19] K. O. Sarfo, W. M. Amuna, B. N. Pouliwe, and F. B. Effah, “An Improved P&O MPPT Algorithm Under Partial Shading Conditions,” in 2020 IEEE PES/IAS PowerAfrica, IEEE, 2020, pp. 1-5. https://doi.org/10.1109/PowerAfrica49420.2020.9219851
- [20] A. Rajagukguk and M. Aritonang, “Optimization of PV Power Capacity of 10 KWp Capacity Based on P&O Algorithm and Boost Converter,” International Journal of Electrical, Energy and Power System Engineering, vol. 3, no. 3, pp. 57-64, 2020. https://doi.org/10.31258/ijeepse.3.3.57-64
- [21] W. A. Santosa, S. Anam, and F. A. Pamuji, “Design and Implementation of Solar Charge Controller with P&O MPPT for Light-Fishing in Ujung Pangkah, Gresik,” JAREE (Journal on Advanced Research in Electrical Engineering), vol. 4, no. 1, 2020. https://doi.org/10.12962/j25796216.v4.i1.82
- [22] W. Hayder, E. Ogliari, A. Dolara, A. Abid, M. Ben Hamed, and L. Sbita, “Improved PSO: A comparative study in MPPT algorithm for PV system control under partial shading conditions,” Energies (Basel), vol. 13, no. 8, p. 2035, 2020. https://doi.org/10.3390/en13082035
- [23] W. Hayder, E. Ogliari, A. Dolara, A. Abid, M. Ben Hamed, and L. Sbita, “Improved PSO: A comparative study in MPPT algorithm for PV system control under partial shading conditions,” Energies (Basel), vol. 13, no. 8, p. 2035, 2020. https://doi.org/10.3390/en13082035
- [24] Z. Iklima, A. Adriansyah, and S. Hitimana, “Self-collision avoidance of arm robot using generative adversarial network and particles swarm optimization (gan-pso),” Sinergi, vol. 25, no. 2, pp. 141-152, 2021. https://doi.org/10.22441/sinergi.2021.2.005
- [25] A. Adriansyah, S. H. M. Amin, A. Minarso, and E. Ihsanto, “Improvement of quadrotor performance with flight control system using particle swarm proportional-integral-derivative (PS-PID),” J Teknol, vol. 79, no. 6, 2017. https://doi.org/10.11113/jt.v79.10680
- [26] A. Adriansyah and E. Ihsanto, “Design of Goal-Seeking Behavior-Based Mobile Robot Using Particle Swarm Fuzzy Controller,” Jurnal Ilmiah Kursor, vol. 7, no. 3, 2014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a68ee9c-5c5f-4546-8129-7ff96675e0b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.