Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Organic molecules with extended π-conjugation frameworks are emerging as promising candidates for active media in nanoscale optoelectronic applications. Benzodichalco-genophene (BDC) derivatives, in particular, exhibit rigid planar geometries and tunable electronic properties, making them attractive for use in single-molecule laser devices. This study theoretically examines the structural, electronic, optical, and charge transport properties of several BDC molecules using advanced computational methods. Geometry optimizations were conducted with the Perdew Burke Ernzerhof (PBE) functional via the SIESTA package, while electronic properties were evaluated at the B3LYP/3-21G level. Time-dependent density functional theory (TD-DFT) was employed to simulate optical absorption spectra, and the GOLLUM code was used to model charge transport through molecular junctions based on non-equilibrium Green’s function formalism. The findings reveal that increasing molecular length narrows the highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO-LUMO) gap, enhances orbital delocalization, and improves electron transmission. Optical simulations revealed red-shifted absorption peaks and increased oscillator strengths, indicating enhanced light-matter interactions. Furthermore, density of states analysis confirmed the transition from HOMO- to LUMO-dominated transport with greater conjugation. Overall, BDC derivatives show strong potential for integration into molecular-scale lasers and optoelectronic devices, paving the way for future experimental and technological advancements.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e155865
Opis fizyczny
Bibliogr. 73 poz., rys., wykr., tab.
Twórcy
autor
- Department of Vision Screening Techniques, College of Health and Medical Techniques, Al-Furat Al-Awsat Technical University, An-Najaf, 54001, Iraq
autor
- Optical Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Babylon, 51001, Iraq
autor
- Department of Physics, College of Science, University of Babylon, Hilla 51001, Iraq
autor
- Optical Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Babylon, 51001, Iraq
Bibliografia
- [1] Avouris, P., Chen, Z. & Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2, 605-615 (2007). https://doi.org/10.1038/nnano.2007.300.
- [2] Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654-657 (2003). https://doi.org/10.1038/nature01797.
- [3] Geim, A. K. & Novoselov, K. S. The Rise of Graphene. in Nanoscience and Technology. A Collection of Reviews from Nature Journals (ed. Rodgers, P.) 11-19 (Nature Publishing Group, 2009). https://doi.org/10.1142/9789814287005_0002.
- [4] Tao, N. J. Electron transport in molecular junctions. Nat. Nanotechnol. 1, 173-181 (2006). https://doi.org/10.1038/nnano.2006.130.
- [5] Anthony, J. E. Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 106, 5028-5048 (2006). https://doi.org/10.1021/cr050966z.
- [6] Wu, X. et al. An oriented design of a π-conjugated polymer framework for high-performance solid-state lithium batteries. Energy Environ. Sci. 18, 1835-1846 (2025). https://doi.org/10.1039/d4ee03104k.
- [7] Cachaneski-Lopes, J. P. & Batagin-Neto, A. Effects of mechanical deformation on the opto-electronic responses, reactivity, and performance of conjugated polymers: A DFT study. Polymers (Basel) 14, 1354 (2022). https://doi.org/10.3390/polym14071354.
- [8] Matsuda, M. et al. Impact of the heteroatoms on mobility-stretchability properties of n-type semiconducting polymers with conjugation break spacers. Macromolecules 56, 2348-2361 (2023). https://doi.org/10.1021/acs.macromol.3c00109.
- [9] Peng, X. et al. Construction frontier molecular orbital prediction model with transfer learning for organic materials. npj Comput. Mater. 10, 213 (2024). https://doi.org/10.1038/s41524-024-01403-6.
- [10] Khalid, M. et al. Exploration of second and third order nonlinear optical properties for theoretical framework of organic D–π–D–π–A type compounds. Opt. Quantum Electron. 53, 561 (2021). https://doi.org/10.1007/s11082-021-03212-3.
- [11] Samuel, I. D W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272-1295 (2007). https://doi.org/10.1002/chin.200731219.
- [12] Quochi, F. et al. Extending the lasing wavelength coverage of organic semiconductor nanofibers by periodic organic-organic heteroepitaxy. Adv. Opt. Mater. 1, 117-122 (2013). https://doi.org/10.1002/adom.201200005.
- [13] Xia, H. et al. Advances in conjugated polymer lasers. Polymers (Basel) 11, 443 (2019). https://doi.org/10.3390/polym11030443.
- [14] Loudet, A. & Burgess, K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chem. Rev. 107, 4891-4932 (2007). https://doi.org/10.1021/cr078381n.
- [15] Tang, M. L. & Bao, Z. Halogenated materials as organic semiconductors. Chem. Mater. 23, 446-455 (2011). https://doi.org/10.1021/cm102182x.
- [16] Li, Y. & Zou, Y. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility. Adv. Mater. 20, 2952-2958 (2008). https://do.org/10.1002/adma.200800606.
- [17] Gierschner, J. & Park, S. Y. Luminescent distyrylbenzenes: Tailoring molecular structure and crystalline morphology. J. Mater. Chem. C 1, 5818-5832 (2013). https://doi.org/10.1039/c3tc31062k.
- [18] Mei, J. et al. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 115, 11718-11940 (2015). https://doi.org/10.1021/acs.chemrev.5b00263.
- [19] Scherf, U., Riechel, S., Lemmer, U. & Mahrt, R. F. Conjugated polymers: Lasing and stimulated emission. Curr. Opin. Solid State Mater. Sci. 5, 143-154 (2001). https://doi.org/10.1016/S1359-0286(01)00010-9.
- [20] Friederich, P. et al. Molecular origin of the charge carrier mobility in small molecule organic semiconductors. Adv. Funct. Mater. 26, 5757-5763 (2016). https://doi.org/10.1002/adfm.201601807.
- [21] Maadhu, T. & Gandhiraj, V. Design, crystal growth and characterizations of novel bis morpholinium zinc bromide single crystals for optoelectronic applications. Opt. Mater. 138, 113694 (2023). https://doi.org/10.1016/j.optmat.2023.113694.
- [22] Maadhu, T. et al. Novel metal – organic framework and crystal engineering of bismorpholinium mercury(II) tribromo chloride (BMMC) for optoelectronic applications. Cryst. Growth Des. 24, 1632-1647 (2024). https://doi.org/10.1021/acs.cgd.3c01284.
- [23] Maadhu, T., Gopalakrishnan, A., Gandhiraj, V. & Senthil Pandian, M. Physicochemical properties of 2-amino-5-methylpyridinium 3-carboxy-4-hydroxybenzenesulfonate single crystal: An efficient material for optoelectronic applications. J. Mol. Struct. 1319, 139536 (2025). https://doi.org/10.1016/j.molstruc.2024.139536.
- [24] Maadhu, T. et al. Synthesis, experimental and theoretical studies of morpholinium bromide single crystal for NLO application. J. Mol. Struct. 1294, 136522 (2023). https://doi.org/10.1016/j.molstruc.2023.136522.
- [25] Kharissova, O. V., Kharisov, B. I. & González, L. T. Recent trends on density functional theory-assisted calculations of structures and properties of metal-organic frameworks and metal-organic frameworks-derived nanocarbons. J. Mater. Res. 35, 1424-1438 (2020). https://doi.org/10.1557/jmr.2020.109.
- [26] Shi, W., Wang, D. & Shuai, Z. High‐performance organic thermoelectric materials: Theoretical insights and computational design. Adv. Electron. Mater. 5, 1800882 (2019). https://doi.org/10.1002/aelm.201800882.
- [27] Lambert, C. J. Quantum Transport in Nanostructures and Molecules: An Introduction to Molecular Electronics. (IoP Publishing, 2021).
- [28] Ratner, M. A brief history of molecular electronics. Nat. Nanotechnol. 8, 378-381 (2013). https://doi.org/10.1038/nnano.2013.110.
- [29] Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 14, 2745 (2002). https://doi.org/10.1088/0953-8984/14/11/302.
- [30] Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865.
- [31] García Arribas, A. et al. Siesta: Recent developments and applications. J. Chem. Phys. 152, 204208 (2020). https://doi.org/10.1063/5.0005077.
- [32] Yu, Y. et al. A p-π* conjugated triarylborane as an alcohol-processable n-type semiconductor for organic optoelectronic devices. J. Mater. Chem. C 7, 7427-7432 (2019). https://doi.org/10.1039/C9TC01562K.
- [33] Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648-5652 (1993). https://doi.org/10.1063/1.464913.
- [34] Clark, J. & Lanzani, G. Organic photonics for communications. Nat. Photonics 4, 438-446 (2010). https://doi.org/10.1038/nphoton.2010.160.
- [35] Ferrer, J. et al. GOLLUM: A next-generation simulation tool for electron, thermal and spin transport. New J. Phys. 16, 093029 (2014). https://doi.org/10.1088/1367-2630/16/9/093029.
- [36] Cuevas, J. C. & Scheer, E. Molecular Electronics: An Introduction To Theory and Experiment. (World Scientific, 2010).
- [37] Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 110, 6158-6170 (1999). https://doi.org/10.1063/1.478522.
- [38] Teunissen, J. L., De Proft, F. & De Vleeschouwer, F. Tuning the HOMO–LUMO energy gap of small diamondoids using inverse molecular design. J. Chem. Theory Comput. 13, 1351-1365 (2017). https://doi.org/10.1021/acs.jctc.6b01074.
- [39] Toninelli, C. et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 20, 1615-1628 (2021). https://doi.org/10.1038/s41563-021-00987-4.
- [40] Wen, L., Luo, D., Cheng, L., Zhao, K. & Ma, H. Electronic structure properties of two-dimensional π-conjugated polymers. Macromolecules 49, 1305-1312 (2016). https://doi.org/10.1021/acs.macromol.5b02572.
- [41] Yang, Y. et al. Charge transfer and photophysical properties of DSSCs based on different π-conjugated bridges: DFT and TD-DFT study. J. Mol. Graph. Model. 137, 108986 (2025). https://doi.org/10.1016/j.jmgm.2025.108986.
- [42] Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904-907 (2006). https://doi.org/10.1038/nature05037.
- [43] Facchetti, A. π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733-758 (2011). https://doi.org/10.1021/cm102419z.
- [44] Oberhofer, H., Reuter, K. & Blumberger, J. Charge transport in molecular materials: An assessment of computational methods. Chem. Rev. 117, 10319-10357 (2017). https://doi.org/10.1021/acs.chemrev.7b00086.
- [45] Moth-Poulsen, K. & Bjørnholm, T. Molecular electronics with single molecules in solid-state devices. Nat. Nanotechnol. 4, 551-556 (2009). https://doi.org/10.1038/nnano.2009.176.
- [46] Bahari, Y., Mortazavi, B., Rajabpour, A., Zhuang, X. & Rabczuk, T. Application of two-dimensional materials as anodes for rechargeable metal-ion batteries: A comprehensive perspective from density functional theory simulations. Energy Storage Mater. 35, 203-282 (2021). https://doi.org/10.1016/j.ensm.2020.11.004.
- [47] Rubert-Albiol, R. et al. Charge transport in structurally related organic semiconductors: experimental determination and computational modeling in crystalline and amorphous scenarios. J. Phys. Chem. C 129, 5960-5972 (2025). https://doi.org/10.1021/acs.jpcc.4c08068.
- [48] Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nat. Nanotechnol. 8, 399-410 (2013). https://doi.org/10.1038/nnano.2013.91.
- [49] Quek, S. Y. et al. Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotechnol. 4, 230-234 (2009). https://doi.org/10.1038/nnano.2009.10.
- [50] Sun, L. et al. Single-molecule electronics: From chemical design to functional devices. Chem. Soc. Rev. 43, 7378-7411 (2014). https://doi.org/10.1039/C4CS00143E..
- [51] Anthony, J. E. Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 106, 5028-5048 (2006). https://doi.org/10.1021/cr050966z.
- [52] Bhat,V., Callaway, C. P. & Risko, C. Computational approaches for organic semiconductors: From chemical and physical understanding to predicting new materials. Chem. Rev. 123, 7498-7547 (2023). https://doi.org/10.1021/acs.chemrev.2c00704.
- [53] Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221-1223 (2003). https://doi.org/10.1126/science.108748.
- [54] Liu, H. et al. Length‐dependent conductance of molecular wires and contact resistance in metal–molecule–metal junctions. ChemPhysChem 9, 1416-1424 (2008). https://doi.org/10.1002/cphc.200800032.
- [55] Yasini, P. et al. Potential-induced high-conductance transport pathways through single-molecule junctions. J. Am. Chem. Soc. 141, 10109-10116 (2019). https://doi.org/10.1021/jacs.9b05448.
- [56] Khoo, K. H., Chen, Y., Li, S. & Quek, S. Y. Length dependence of electron transport through molecular wires – a first principles perspective. Phys. Chem. Chem. Phys. 17, 77-96 (2015). https://doi.org/10.1039/C4CP05006A.
- [57] Lambert, C. J. Basic concepts of quantum interference and electron transport in single-molecule electronics. Chem. Soc. Rev. 44, 875-888 (2015). https://doi.org/10.1039/C4CS00203B.
- [58] Casida, M. E. & Huix-Rotllant, M. Progress in time-dependent density-functional theory. Annu. Rev. Phys. Chem. 63, 287-323 (2012). https://doi.org/10.1146/annurev-physchem-032511-143803.
- [59] Dreuw, A. & Head-Gordon, M. Single-reference ab initio methods for the calculation of excited states of large molecules. Chem. Rev. 105, 4009-4037 (2005). https://doi.org/10.1021/cr0505627.
- [60] Gu, J., Li, Z. & Li, Q. From single molecule to molecular aggregation science. Coord. Chem. Rev. 475, 214872 (2023). https://doi.org/10.1016/j.ccr.2022.214872.
- [61] Spano, F. C. The spectral signatures of Frenkel polarons in H-and J-aggregates. Acc. Chem. Res. 43, 429-439 (2010). https://doi.org/10.1021/ar900233v.
- [62] Zeng, X. Y. et al. Extended conjugation strategy enabling red-shifted and efficient emission of orange-red thermally activated delayed fluorescence materials. ACS Appl. Mater. Interfaces 16, 16563-16572 (2024). https://doi.org/10.1021/acsami.3c18880.
- [63] Yang, et al. Charge transfer and photophysical properties of DSSCs based on different π-conjugated bridges: DFT and TD-DFT study. J. Mol. Graph. Model. 137, 108986 (2025). https://doi.org/10.1016/j.jmgm.2025.108986.
- [64] Datta, S. Electronic Transport in Mesoscopic Systems. (Cambridge University Press, 1997).
- [65] Bihary, Z. & Ratner, M. A. Density of states and transmission in molecular transport junctions. Adv. Quantum Chem. 48, 23-44 (2005). https://doi.org?10.1016/S0065-3276(05)48003-X.
- [66] Quek, S. Y. et al. Amine – gold linked single-molecule circuits: Experiment and theory. Nano Lett. 7, 3477-3482 (2007). https://doi.org/10.1021/nl072058i.
- [67] Xiang, D., Wang, X., Jia, C., Lee, T. & Guo, X. Molecular-scale electronics: From concept to function. Chem. Rev. 116, 4318-4440 (2016). https://doi.org/10.1021/acs.chemrev.5b00680.
- [68] Chen, H. et al. Single-molecule charge transport through positively charged electrostatic anchors. J. Am. Chem. Soc. 143, 2886-2895 (2021). https://doi.org/10.1021/jacs.0c12664.
- [69] Khoo, K. H., Chen, Y., Li, S. & Quek, S. Y. Length dependence of electron transport through molecular wires - a first principles perspective. Phys. Chem. Chem. Phys. 17, 77-96 (2015). https://doi.org/10.1039/c4cp05006a.
- [70] Feng, S.-W., Shih, M.-C., Huang, C. J. & Chung, C.-T. Impacts of dopant concentration on the carrier transport and recombination dynamics in organic light emitting diodes. Thin Solid Films 517, 2719-2723 (2009). https://doi.org/10.1016/j.tsf.2008.10.049.
- [71] Smith, C. E. et al. Length-dependent nanotransport and charge hopping bottlenecks in long thiophene-containing π-conjugated molecular wires. J. Am. Chem. Soc. 137, 15732-15741 (2015). https://doi.org/10.1021/jacs.5b07400.
- [72] Sirringhaus, H., Bird, M., Richards, T. & Zhao, N. Charge transport physics of conjugated polymer field-effect transistors. Adv. Mater. 22, 3893–3898 (2010). https://doi.org/10.1002/adma.200902857.
- [73] Jasim, S. A. et al. Molecular junctions: Introduction and physical foundations, nanoelectrical conductivity and electronic structure and charge transfer in organic molecular junctions. Braz. J. Phys. 52, 31 (2022). https://doi.org/10.1007/s13538-021-01033-z.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a6321ea-d88f-4364-afcd-8e0b9ec0cd4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.