Identyfikatory
Warianty tytułu
Symulacja ruchu samochodu hamującego na losowo nierównej drodze
Języki publikacji
Abstrakty
In this paper a simulation of a vehicle’s braking maneuver in various adopted road conditions has been presented. The aim of this paper was to answer the question whether the random irregularities of a road surface could limit the distance covered by the braking vehicle. At the same time it seems necessary to consider the damaging effect of the road irregularities along with the lack of comfort for both the driver and the passengers. The adopted maneuver of braking started at the initial speed of 100 km/h each time and lasted 10 s. The irregularities adopted for the simulation had three different amplitudes which enabled analysis of vehicle’s deceleration on variously uneven road. Almost different profiles were assumed for the left and the right wheels of the vehicle’s model as well as both the dry and the icy surface on the road.
W artykule przedstawiono symulację manewru hamowania pojazdu w różnych przyjętych warunkach drogowych. Celem artykułu była odpowiedź na pytanie, czy losowe nierówności nawierzchni drogi mogą skrócić drogę proces hamowania pojazdu. Jednocześnie konieczne wydaje się uwzględnienie szkodliwego wpływu nierówności drogowych oraz braku komfortu zarówno dla kierowcy, jak i pasażerów. Przyjęty manewr hamowania rozpoczynał się każdorazowo przy prędkości początkowej 100 km/h i trwał 10 s. Przyjęte do symulacji nierówności drogi miały trzy różne amplitudy, co pozwoliło na analizę wytracania prędkości pojazdu na drogach o różnym stopniu nierówności. Założono prawie różne profile dla lewego i prawego koła modelu pojazdu oraz zarówno suchą, jak i oblodzoną nawierzchnię jezdni.
Czasopismo
Rocznik
Tom
Strony
39--49
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology (Politechnika Warszawska)
Bibliografia
- 1. Agostinacchio M., Ciampa D., Olita S.: The vibrations induced by surface irregularities in road pavements – a Matlab® approach. European Transport Research Review, Vol. 6, 2014, DOI: 10.1007/s12544-013-0127-8.
- 2. Chen Ch., Jia Y., Wang Y., Shu M.: Non-linear velocity observer for vehicles with tyre-road friction estimation. International Journal of Systems Science, Vol. 49(7), 2018, DOI: 10.1080/00207721.2018.1454533.
- 3. Grakovski A., Pilipovecs A.: Dynamics of Interaction between the Road Surface and Vehicle's Wheel in Fibre-optic System for Automatic Weighing in Motion of Transport. Procedia Engineering, Vol. 178, 2017, DOI: 10.1016/j.proeng.2017.01.052.
- 4. Haus S.H., Sherony R., Gabler H.C.: Estimated benefit of automated emergency braking systems for vehicle–pedestrian crashes in the United States. Traffic Injury Prevention, Vol. 20, Sup. 1, 2019, DOI: 10.1080/15389588.2019.1602729.
- 5. Kabanovs A., Garmory A., Passmore M., Gaylard A.: Investigation into the dynamics of wheel spray released from a rotating tyre of a simplified vehicle model. Journal of Wind Engineering and Industrial Aerodynamics, Volume 184, January 2019, DOI: 10.1016/j.jweia.2018.11.024.
- 6. Kisilowski J., Zalewski J.: Modeling of Road Traffic Events. Springer, 2022, DOI: 10.1007/978-3-030-91398-4.
- 7. Levulyte L., Žuraulis V., Sokolovskij E.: The impact of road roughness on the duration of contact between a vehicle wheel and road surface. Transport, Vol. 29(4), 2014, DOI: 10.3846/16484142.2014.984330.
- 8. Meywerk M.: Vehicle dynamics, Wiley, 2015.
- 9. Múčka P.: Current approaches to quantify the longitudinal road roughness. International Journal of Pavement Engineering, Vol. 17, Iss. 8, 2016, DOI:10.1080/10298436.2015.1011782.
- 10. Múčka P.: International Roughness Index Thresholds Based on Whole-Body Vibration in Passenger Cars. Transportation Research Record Journal of the Transportation Research Board, 2675(3):1-16, 2020, DOI: 10.1177/0361198120960475.
- 11. Navin F., Macnabb M., Nicolletti C.: Vehicle traction experiments on snow and ice. SAE Technical Paper Series, no. 960652, 1996, DOI: 10.4271/960652.
- 12. Ning L., Liu Y., Tan S.: Experimental Research on Braking Feedback and Taxiing Feedback System of New Energy Vehicles. Applied Sciences, vol. 11(23), 2021, DOI: 10.3390/app112311093.
- 13. Sabri M., Fauza A.: Analysis of vehicle braking behaviour and distance stopping, IOP Conference Series: Materials Science and Engineering, no. 309(1):012020, DOI: 10.1088/1757-899X/309/1/012020.
- 14. Surblys V., Sokolovskij E.: Research of the Vehicle Brake Testing Efficiency. Procedia Engineering, Vol. 134, 2016, DOI: 10.1016/j.proeng.2016.01.067.
- 15. Surblys V., Žuraulis V., Sokolovskij E.: Estimation of road roughness from data of on-vehicle mounted sensors. Eksploatacja i Niezawodnosc – Maintenance and Reliability, Vol. 19 (3), 2017, DOI: 10.17531/ein.2017.3.7.
- 16. Synák F., Rievaj V., Kučera M., Šebök M., Skrúcaný T.: Effect of repeated vehicle braking on the warming of selected parts of the vehicle. Scientific Journal of Silesian University of Technology, Series Transport, Vol. 107, 2020, DOI: 10.20858/sjsutst.2020.107.14.
- 17. Wawryszczuk R., Kardas-Cinal E.: Analysis of ride comfort in selected types of rail vehicles. Journal of KONBiN, Vol. 51, Iss. 4, 2021, DOI: 10.2478/jok-2021-0049.
- 18. Yang W., Liu J., Zhou K., Zhang Z., Qu X.: An Automatic Emergency Braking Model considering Driver’s Intention Recognition of the Front Vehicle. Journal of Advanced Transportation, vol. 2020, DOI: 10.1155/2020/5172305.
- 19. Zalewski J.: Simulation of a motor vehicle momentarily accelerating in various road conditions. Journal of KONBiN, Vol. 51, Iss. 1, 2021, DOI: 10.2478/jok-2021-0010.
- 20. Zhao J., Zhang J., Zhu B.: Development and verification of the tire/road friction estimation algorithm for antilock braking system. Mathematical Problems in Engineering no. 786492, 2014, DOI: 10.1155/2014/786492.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a6203aa-1b43-422a-829f-e93a92c14a66