PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Maximum power point tracking techniques for low-cost solar photovoltaic applications – Part I: constant parameters and trial-and-error

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of research on the maximum power point tracking (MPPT) controller has increased significantly in this decade. The MPPT technique, however, is still demanding because of the ease and simplicity of implementing tracking technique on the maximum power point (MPP). In this paper, MPPT techniques and their modifications from various literature are classified and examined in detail. The discussions are focused on the main objective of obtaining the best possible MPPT technique with the best results at a low cost. The assessment for the selection of MPPT techniques is based on assessments from the previous literature. The discussion of the MPPT technique assessment is divided into two parts. In Part I, the MPPT technique based on constant parameters, and trial-and-error will be discussed in detail, along with its algorithm development in recent times.
Rocznik
Strony
125--145
Opis fizyczny
Bibliogr. 74 poz., rys., tab.
Twórcy
autor
  • Department of Electrical Engineering, Universitas Ahmad Dahlan Yogyakarta, Indonesia
  • Department of Electrical Engineering, Universitas Ahmad Dahlan Yogyakarta, Indonesia
autor
  • Faculty of Engineering and Architecture, Kore University of Enna Italy
autor
  • School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia Johor Bahru, Malaysia
  • Capital University of Science and Technology Islamabad, Pakistan
Bibliografia
  • [1] Ram J.P., Babu T.S., Rajasekar N., A comprehensive review on solar PV maximum power point tracking techniques, Renewable and Sustainable Energy Reviews, vol. 67, pp. 826–847 (2017), DOI: 10.1016/j.rser.2016.09.076.
  • [2] Pallavee Bhatnagar A., Nema B.R.K., Conventional and global maximum power point tracking techniques in photovoltaic applications: A review, Journal of Renewable and Sustainable Energy, vol. 5, no. 3, p. 2701 (2013), DOI: 10.1063/1.4803524.
  • [3] Sutikno T., Subrata A.C., Elkhateb A., Evaluation of Fuzzy Membership Function Effects for Maximum Power Point Tracking Technique of Photovoltaic System, IEEE Access, p. 1 (2021), DOI: 10.1109/ACCESS.2021.3102050.
  • [4] Hafiz A.M., Abdelrahman M.E., Temraz H., Economic dispatch in power system networks including renewable energy resources using various optimization techniques, Archives of Electrical Engineering, vol. 70, no. 3, pp. 643–655 (2021), DOI: 10.24425/aee.2021.137579.
  • [5] Solangi K.H., Islam M.R., Saidur R., Rahim N.A., Fayaz H., A review on global solar energy policy, Renewable and Sustainable Energy Reviews, vol. 15, no. 4, pp. 2149–2163 (2011), DOI: 10.1016/j.rser.2011.01.007.
  • [6] Tsoutsos T., Frantzeskaki N., Gekas V., Environmental impacts from the solar energy technologies, Energy Policy, vol. 33, no. 3, pp. 289–296 (2005), DOI: 10.1016/S0301-4215(03)00241-6.
  • [7] Wang Q., Qiu H.-N., Situation and outlook of solar energy utilization in Tibet, China, Renewable and Sustainable Energy Reviews, vol. 13, no. 8, pp. 2181–2186 (2009), DOI: 10.1016/j.rser.2009.03.011.
  • [8] Saidur R., Islam M.R., Rahim N.A., Solangi K.H., A review on global wind energy policy, Renewable and Sustainable Energy Reviews, vol. 14, no. 7, pp. 1744–1762 (2010), DOI: 10.1016/j.rser.2010.03.007.
  • [9] Liserre M., Sauter T., Hung J.Y., Future energy systems: Integrating renewable energy sources into the smart power grid through industrial electronics, IEEE Industrial Electronics Magazine, vol. 4, no. 1, pp. 18–37 (2010), DOI: 10.1109/MIE.2010.935861.
  • [10] Mohapatra A., Nayak B., Das P., Mohanty K.B., A review on MPPT techniques of PV system under partial shading condition, Renewable and Sustainable Energy Reviews, vol. 80, pp. 854–867 (2017), DOI: 10.1016/j.rser.2017.05.083.
  • [11] Seyedmahmoudian M., Horan B., Soon T.K., Rahmani R., Than Oo A.M., Mekhilef S. et al., State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review, Renewable and Sustainable Energy Reviews, vol. 64, pp. 435–455 (2016), DOI: 10.1016/j.rser.2016.06.053.
  • [12] Yang B., Zhu T., Wang J., Shu H., Yu T., Zhang X. et al., Comprehensive overview of maximum power point tracking algorithms of PV systems under partial shading condition, Journal of Cleaner Production, p. 121983 (2020), DOI: 10.1016/j.jclepro.2020.121983.
  • [13] Subudhi B., Pradhan R., A comparative study on maximum power point tracking techniques for photovoltaic power systems, IEEE Transactions on Sustainable Energy, vol. 4, no. 1, pp. 89–98 (2012), DOI: 10.1109/TSTE.2012.2202294.
  • [14] Salam Z., Ahmed J., Merugu B.S., The application of soft computing methods for MPPT of PV system: A technological and status review, Applied Energy, vol. 107, pp. 135–148 (2013), DOI: 10.1016/j.apenergy.2013.02.008.
  • [15] Seddjar A., Kerrouche K.D.E., Wang L., Simulation of the proposed combined Fuzzy Logic Control for Maximum Power Point Tracking and Battery Charge Regulation used in CubeSat, Archives of Electrical Engineering, vol. 69, no. 3, pp. 521–543 (2020), DOI: 10.24425/aee.2020.133916.
  • [16] Verma D., Nema S., Shandilya A.M., Dash S.K., Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems, Renewable and Sustainable Energy Reviews, vol. 54, pp. 1018–1034 (2016), DOI: 10.1016/j.rser.2015.10.068.
  • [17] Esram T., Chapman P.L., Comparison of photovoltaic array maximum power point tracking techniques, IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 439–449 (2007), DOI: 10.1109/TEC.2006.874230.
  • [18] Ali A.N.A., Saied M.H., Mostafa M.Z., Abdel-Moneim T.M., A survey of maximum PPT techniques of PV systems, IEEE Energytech, pp. 1–17 (2012), DOI: 10.1109/EnergyTech.2012.6304652.
  • [19] Kamarzaman N.A., Tan C.W., A comprehensive review of maximum power point tracking algorithms for photovoltaic systems, Renewable and Sustainable Energy Reviews, vol. 37, pp. 585–598 (2014), DOI: 10.1016/j.rser.2014.05.045.
  • [20] Bendib B., Belmili H., Krim F., A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems, Renewable and Sustainable Energy Reviews, vol. 45, pp. 637–648 (2015), DOI: 10.1016/j.rser.2015.02.009.
  • [21] Gupta A., Chauhan Y.K., Pachauri R.K., A comparative investigation of maximum power point tracking methods for solar PV system, Solar Energy, vol. 136, pp. 236–253 (2016), DOI: 10.1016/j.solener.2016.07.001.
  • [22] Podder A.K., Roy N.K., Pota H.R., MPPT methods for solar PV systems: a critical review based on tracking nature, IET Renewable Power Generation, vol. 13, no. 10, pp. 1615–1632 (2019), DOI: 10.1049/iet-rpg.2018.5946.
  • [23] Tajuddin M.F.N., Arif M.S., Ayob S.M., Salam Z., Perturbative methods for maximum power point tracking (MPPT) of photovoltaic (PV) systems: a review, International Journal of Energy Research, vol. 39, no. 9, pp. 1153–1178 (2015), DOI: 10.1049/iet-rpg.2019.1163.
  • [24] Danandeh M.A., Mousavi G.S.M., Comparative and comprehensive review of maximum power point tracking methods for PV cells, Renewable and Sustainable Energy Reviews, vol. 82, pp. 2743–2267 (2018), DOI: 10.1016/j.rser.2017.10.009.
  • [25] Bollipo R.B., Mikkili S., Bonthagorla P.K., Critical Review on PV MPPT Techniques: Classical, Intelligent and Optimisation, IET Renewable Power Generation, vol. 19, no. 9, pp. 1433–1452 (2020), DOI: 10.1049/iet-rpg.2019.1163.
  • [26] Karami N., Moubayed N., Outbib R., General review and classification of different MPPT Techniques, Renewable and Sustainable Energy Reviews, vol. 68, pp. 1–18 (2017), DOI: 10.1016/j.rser.2016.09.132.
  • [27] Mao M., Cui L., Zhang Q., Guo K., Zhou L., Huang H., Classification and summarization of solar photovoltaic MPPT techniques: A review based on traditional and intelligent control strategies, Energy Reports, vol. 6, pp. 1312–1327 (2020), DOI: 10.1016/j.egyr.2020.05.013.
  • [28] Zhang B., Hong D., Wang T., Zhang Z., Wang D., A novel two-phase interleaved parallel bdirectional DC/DC converter, Archives of Electrical Engineering, vol. 70, no. 1, pp. 219–231 (2021), DOI: 10.24425/aee.2021.136063.
  • [29] Killi M., Samanta S., Modified perturb and observe MPPT algorithm for drift avoidance in photovoltaic systems, IEEE Transactions on Industrial Electronics, vol. 62, no. 9, pp. 5549–5559 (2015), DOI: 10.1109/TIE.2015.2407854.
  • [30] Masoum M.A.S., Dehbonei H., Fuchs E.F., Theoretical and experimental analyses of photovoltaic systems with voltageand current-based maximum power-point tracking, IEEE Transactions on Energy Conversion, vol. 17, no. 4, pp. 514–522 (2002), DOI: 10.1109/TEC.2002.805205.
  • [31] Bharath K.R., Suresh E., Design and implementation of improved fractional open circuit voltage based maximum power point tracking algorithm for photovoltaic applications, International Journal of Renewable Energy Research, vol. 7, no. 3, pp. 1108–1113 (2017), DOI: 10.20508/ijrer.v7i3.5899.g7141.
  • [32] Leedy A.W., Guo L., Aganah K.A., A constant voltage MPPT method for a solar powered boost converter with DC motor load, Proceedings of IEEE Southeastcon, pp. 1–6 (2012), DOI: 10.1109/SECon.2012.6196885.
  • [33] Ahmad J., A fractional open circuit voltage based maximum power point tracker for photovoltaic arrays, 2010 2nd International Conference on Software Technology and Engineering, vol. 1, pp. V1-247 (2010), DOI: 10.1109/ICSTE.2010.5608868.
  • [34] Das P., Maximum power tracking based open circuit voltage method for PV system, Energy Procedia, vol. 90, pp. 2–13 (2016), DOI: 10.1016/j.egypro.2016.11.165.
  • [35] Sher H.A., Murtaza A.F., Noman A., Addoweesh K.E., Chiaberge M., An intelligent control strategy of fractional short circuit current maximum power point tracking technique for photovoltaic applications, Journal of Renewable and Sustainable Energy, vol. 7, no. 1, p. 13114 (2015), DOI: 10.1063/1.4906982.
  • [36] Asim M., Tariq M., Mallick M.A., Ashraf I., An improved constant voltage based MPPT technique for PMDC motor, International Journal of Power Electronics and Drive Systems, vol. 7, no. 4 (2016), DOI: 10.11591/ijpeds.v7i4.pp1330-1336.
  • [37] Baimel D., Tapuchi S., Levron Y., Belikov J., Improved fractional open circuit voltage mppt methods for pv systems, Electronics, vol. 8, no. 3, p. 321 (2019), DOI: 10.3390/electronics8030321.
  • [38] El Mentaly L., Amghar A., Sahsah H., Improvement of the Temperature Parametric (TP) Method for Fast Tracking of Maximum Power Point in Photovoltaic Modules, International Journal of Electrical Power and Energy Systems, vol. 20, no. 5 (2019), DOI: 10.1515/ijeeps-2018-0311.
  • [39] Karanjkar D.S., Chatterji S., Shimi S.L., Kumar A., An improved current feedback based maximum power point tracking controller for solar photo-voltaic system, Annual International Conference on Emerging Research Areas and 2013 International Conference on Microelectronics, Communications and Renewable Energy, pp. 1–6 (2013), DOI: 10.1109/AICERA-ICMiCR.2013.6576032.
  • [40] Sanjeevikumar P., Grandi G., Wheeler P.W., Blaabjerg F., Loncarski J., A simple MPPT algorithm for novel PV power generation system by high output voltage DC–DC boost converter, 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), pp. 214–220 (2015), DOI: 10.1109/ISIE.2015.7281471.
  • [41] Kobayashi K., Matsuo H., Sekine Y., An excellent operating point tracker of the solar-cell power supply system, IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 495–499 (2006), DOI: 10.1109/tie.2006.870669.
  • [42] Huang Y.-P., Hsu S.-Y., A performance evaluation model of a high concentration photovoltaic module with a fractional open circuit voltage-based maximum power point tracking algorithm, Computers and Electrical Engineering, vol. 51, pp. 331–342 (2016), DOI: 10.1016/j.compeleceng.2016.01.009.
  • [43] Hsu T.-W., Wu H.-H., Tsai D.-L., Wei C.-L., Photovoltaic energy harvester with fractional open-circuit voltage based maximum power point tracking circuit, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 2, pp. 257–261 (2018), DOI: 10.1109/TCSII.2018.2838672.
  • [44] Ankaiah B., Nageswararao J., Enhancement of Solar Photovoltaic Cell by Using Short-Circuit Current MPPT Method, International Journal of Science and Engineering Invention, vol. 2, no. 2, pp. 45–50 (2013).
  • [45] Kumari J.S., Babu C.S., Yugandhar J., Design and investigation of short circuit current based maximum power point tracking for photovoltaic system, International Journal of Electrical and Computer Engineering, vol. 1 (2011).
  • [46] Sandali A., Oukhoya T., Cheriti A., Modeling and design of PV grid connected system using a modified fractional short-circuit current MPPT, International Renewable and Sustainable Energy Conference, 2014, p. 224–9 (2014), DOI: 10.1109/IRSEC.2014.7059859.
  • [47] Kumar R., Sahu B., Shiva C.K., Rajender B., A control topology for frequency regulation capability in a grid integrated PV system, Archives of Electrical Engineering, vol. 69, no. 2, pp. 389–401 (2020), DOI: 10.24425/aee.2020.133033.
  • [48] Subudhi B., Pradhan R., Characteristics evaluation and parameter extraction of a solar array based on experimental analysis, 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems, pp. 340–344 (2011), DOI: 10.1109/PEDS.2011.6147269.
  • [49] Wasynezuk O., Dynamic behavior of a class of photovoltaic power systems, IEEE Transactions on Power Apparatus and Systems, no. 9, pp. 3031–3037 (1983), DOI: 10.1109/TPAS.1983.318109.
  • [50] Shimizu T., Hashimoto O., Kimura G., A novel high-performance utility-interactive photovoltaic inverter system, IEEE Transactions on Power Electronics, vol. 18, no. 2, pp. 704–11 (2003), DOI: 10.1109/TPEL.2003.809375.
  • [51] Koutroulis E., Kalaitzakis K., Voulgaris N.C., Development of a microcontroller-based, photovoltaic maximum power point tracking control system, IEEE Transactions on Power Electronics, vol. 16, no. 1, pp. 46–54 (2001), DOI: 10.1109/63.903988.
  • [52] Veerachary M., Senjyu T., Uezato K., Maximum power point tracking control of IDB converter supplied PV system, IEE Proceedings - Electric Power Applications, vol. 148, no. 6, pp. 494–502 (2001), DOI: 10.1049/ip-epa:20010656.
  • [53] Xiao W., Dunford W.G., A modified adaptive hill climbing MPPT method for photovoltaic power systems, 2004 IEEE 35th Annual Power Electronics Specialists Conference, vol. 3, pp. 1957–1963 (2004), DOI: 10.1109/PESC.2004.1355417.
  • [54] Vicente E.M., dos Santos Vicente P., Moreno R.L., Ribeiro E.R., High-efficiency MPPT method based on irradiance and temperature measurements, IET Renewable Power Generation, vol. 14, no. 3, pp. 986–995 (2020), DOI: 1049/iet-rpg.2019.0849.
  • [55] El Mentaly L., Amghar A., Sahsah H., Comparison between Seven MPPT Techniques Implemented in a Buck Converter, Recent Advances in Electrical and Electronic Engineering, vol. 12, no. 6, pp. 476–486 (2019), DOI: 10.2174/2352096511666180705113647.
  • [56] Park M., Yu I.-K., A study on the optimal voltage for MPPT obtained by surface temperature of solar cell, 30th Annual Conference of IEEE Industrial Electronics Society, vol. 3, pp. 2040–2045 (2004), DOI: 10.1109/IECON.2004.1432110.
  • [57] Faranda R., Leva S., Maugeri V., MPPT techniques for PV systems: Energetic and cost comparison, 2008 IEEE Power and Energy Society General Meeting, pp. 1–6 (2008), DOI: 10.1109/PES.2008.4596156.
  • [58] Fernández H., Martínez A., Guzmán V., Gímenez M.I., A simple, low cost design using current feedback to improve the efficiency of a MPPT-PV system for isolated locations, 2008 13th International Power Electronics and Motion Control Conference, pp. 1947–50 (2008), DOI: 10.1109/EPEPEMC.2008.4635550.
  • [59] Femia N., Petrone G., Spagnuolo G., Vitelli M., Optimization of perturb and observe maximum power point tracking method, IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 963–973 (2005), DOI: 10.1109/TPEL.2005.850975.
  • [60] Wolfs P. J., Tang L., A single cell maximum power point tracking converter without a current sensor for high performance vehicle solar arrays, 2005 IEEE 36th Power Electronics Specialists Conference, pp. 165–71 (2005), DOI: 10.1109/PESC.2005.1581619.
  • [61] D’Souza N. S., Lopes L.A.C., Liu X., An intelligent maximum power point tracker using peak current control, 2005 IEEE 36th Power Electronics Specialists Conference, p. 172 (2005), DOI: 10.1109/ PESC.2005.1581620.
  • [62] Pandey A., Dasgupta N., Mukerjee A. K., High-performance algorithms for drift avoidance and fast tracking in solar MPPT system, IEEE Transactions on Energy Conversion, vol. 23, no. 2, pp. 681–689 (2008), DOI: 10.1109/TEC.2007.914201.
  • [63] Sefa I., Özdemir Ş., Experimental study of interleaved MPPT converter for PV systems, 35th Annual Conference of IEEE Industrial Electronics, pp. 456–461 (2009), DOI: 10.1109/IECON.2009.5414965.
  • [64] Hua C., Lin J.R., DSP-based controller application in battery storage of photovoltaic system, Proceedings of the 1996 IEEE IECON, 22nd International Conference on Industrial Electronics, Control, and Instrumentation, vol. 3, pp. 17051710 (1996), DOI: 10.1109/IECON.1996.570673.
  • [65] Elgendy M.A., Zahawi B., Atkinson D.J., Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications, IEEE Transactions on Sustainable Energy, vol. 3, no. 1, pp. 21–33 (2011), DOI: 10.1109/TSTE.2011.2168245.
  • [66] Ahmed J., Salam Z., An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency, Applied Energy, vol. 150, pp. 97–108 (2015), DOI: 10.1016/ j.apenergy.2015.04.006.
  • [67] Jusoh A. Bin, Mohammed O.J.E.I., Sutikno T., Variable step size Perturb and observe MPPT for PV so-lar applications, Telkomnika, vol. 13, no. 1, p. 1 (2015), DOI: 10.12928/TELKOMNIKA.v13i1.1180.
  • [68] Alik R., Jusoh A., An enhanced P&O checking algorithm MPPT for high tracking efficiency of partially shaded PV module, Solar Energy, vol. 163, pp. 570–580 (2018), DOI: 10.1016/j.solener.2017.12.050.
  • [69] Lee J.-S., Lee K.B., Variable DC-link voltage algorithm with a wide range of maximum power point tracking for a two-string PV system, Energies, vol. 6, no. 1, pp. 58–78 (2013), DOI: 10.3390/en6010058.
  • [70] Matsui M., Kitano T., Xu D., Yang Z., A new maximum photovoltaic power tracking control scheme based on power equilibrium at DC link, Conference Record of the 1999 IEEE Industry Applications Conference, vol. 2, pp. 804–809 (1999), DOI: 10.1109/IAS.1999.801599.
  • [71] Kitano T., Matsui M., Xu D., Power sensor-less MPPT control scheme utilizing power balance at DC link-system design to ensure stability and response, IECON’01. 27th Annual Conference of the IEEE Industrial Electronics Society, vol. 2, pp. 1309–1314 (2001), DOI: 1109/IECON.2001.975971.
  • [72] Ding G., Gao F., Tian H., Ma C., Chen M., He G. et al., Adaptive DC-link voltage control of two-stage photovoltaic inverter during low voltage ride-through operation, IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 41824194 (2015), DOI: 10.1109/TPEL.2015.2469603.
  • [73] Zhang L., Hurley W.G., Wölfle W.H., A new approach to achieve maximum power point tracking for PV system with a variable inductor, IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1031–1037 (2010), DOI: 10.1109/TPEL.2010.2089644.
  • [74] Costa V.S., Perdigao M.S., Mendes A.S., Abbes D., Aitouche A., Analysis and simulation of a LLC-VI resonant converter for solar applications, 2017 52nd International Universities Power Engineering Conference, pp. 1–6 (2017), DOI: 10.1109/UPEC.2017.8231962.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a60b681-b413-4db4-9085-ae6eb342a7fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.