PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Köthe-Toeplitz duals of some generalized p-convex sequence spaces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we define α-, β- and γ- duals of the sequence spaces Δmp (Z) for Z = ℓ, c and c0. We study on some matrix transformations of these sequence spaces.
Słowa kluczowe
Rocznik
Tom
Strony
5--12
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
  • Department of Mathematics Firat University Elazig - Turkey
  • Department of Mathematics Siirt University Siirt - Turkey
autor
  • Department of Mathematics Firat University Elazig - Turkey
Bibliografia
  • [1] Ahmad Z. U., Mursaleen M., Köthe-Toeplitz duals of some new sequence spaces and their matrix maps, Publ. Inst. Math. (Beograd) (N.S.), 42(56) (1987), 57-61.
  • [2] Altin Y., Properties of some sets of sequences defined by a modulus function, Acta Math. Sci., Ser. B Engl. Ed. 29(2) (2009), 427-434.
  • [3] Braha N. L., On asymptotically Δm-lacunary statistical equivalent sequences, Appl. Math. Comput., 219(1) (2012), 280-288.
  • [4] Başarir, M., On some new sequence spaces and related matrix transformations, Indian J. Pure Appl. Math., 26(10) (1995), 1003-1010.
  • [5] Bektaş, Ç. A.; Et, M.; Çolak, R., Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl., 292(2) (2004), 423-432.
  • [6] Chandra P., Tripathy B. C., On generalized Köthe-Toeplitz duals of some sequence spaces, Indian J. Pure Appl. Math., 33(8) (2002), 1301-1306.
  • [7] Cooke R. G., Infinite matrices and sequence spaces, Dover Publications, Inc., New York, 1965.
  • [8] Çolak R, Et M., On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math. J., 26(3) (1997), 483-492.
  • [9] Et M., On some difference sequence spaces, Doğa Mat., 17(1) (1993), 18-24.
  • [10] Et M., Çolak R., On some generalized difference sequence spaces, Soochow J. Math., 21(4) (1995), 377-386.
  • [11] Et M., Nuray F., Δm-statistical convergence, Indian J. Pure Appl. Math., 32(6) (2001), 961-969.
  • [12] Et M., Altinok H., Altin Y., On some generalized sequence spaces, Appl. Math. Comput., 154(1) (2004), 167-173.
  • [13] Ioan T., On some p-convex sequences, Acta Univ. Apulensis, Math. Inform., 11 (2006), 249-257.
  • [14] Kamthan P. K., Gupta Manjul, Sequence spaces and series, Lecture Notes in Pure and Applied Mathematics, 65. Marcel Dekker, Inc., New York, 1981.
  • [15] Karakaş A., Altin Y., Et M., Δmp-statistical convergence of order α, Filomat, 32(16) (2018), 5565-5572.
  • [16] Kizmaz H., On certain sequence spaces, Canad. Math. Bull., 24(2) (1981), 169-176.
  • [17] Köthe G., Topological vector spaces, I. Translated from the German by D. J. H. Garling Die Grundlehren der mathematischen Wissenschaften, Springer-Verlag New York Inc., New York, 1969.
  • [18] Köthe G., Toeplitz O., Lineare räume mit unendlich vielen koordinaten und ringe unendlicher matrizen (German), J. Reine Angew. Math., 171 (1934), 193-226.
  • [19] Lascarides C. G., A study of certain sequence spaces of Maddox and a generalization of a theorem of Iyer, Pacific J. Math., 38 (1971), 487-500.
  • [20] Maddox I. J., Infinite matrices of operators, Lecture Notes in Mathematics, 786. Springer, Berlin, 1980.
  • [21] Maddox I. J., Continuous and Köthe-Toeplitz duals of certain sequence spaces, Proc. Cambridge Philos. Soc., 65 (1969), 431-435.
  • [22] Malkowsky E., Parashar S. D., Matrix transformations in spaces of bounded and convergent difference sequences of order m, Analysis, 17(1) (1997), 87-97.
  • [23] Tripathy B. C., On generalized difference paranormed statistically convergent sequences, Indian J. Pure Appl. Math., 35(5) (2004), 655-663.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a5f8123-826c-47e9-960c-20bbd7659534
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.