PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of Deep Cryogenic Treatment Time on Micromechanical and Tribological Properties of Magnesium Alloys WE43 and WE54

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ czasu głębokiej obróbki kriogenicznej na właściwości mikromechaniczne i tribologiczne stopów magnezu WE43 i WE54
Języki publikacji
EN
Abstrakty
EN
The paper presents the effect of deep cryogenic treatment time on micromechanical and tribological properties of magnesium alloys, WE43 and WE54. The alloys were subjected to deep cryogenic treatment at a liquid nitrogen temperature (-196°C) for 2 to 48h. Tribological tests were performed in a rotational and a reciprocating linear motion, and wear trace studies were performed by profilometric and microscopic measurements. The tests indicate that deep cryogenic treatment has a favourable effect on the micromechanical, mechanical and tribological parameters of the two investigated alloys. It has also been shown that sub-zero treatment time significantly impacts the cryogenic treatment result. Among other things, there was a nearly 10% increase in hardness, Young's modulus, and a 35% reduction in tribological volumetric wear resulting from the improvement in mechanical properties, as well as a 2-fold reduction in linear wear with an increase in sub-zero treatment time relative to the material in its as-delivered state. Deep cryogenic treatment with appropriately selected sub-zero treatment time allows for improving the service life of magnesium alloys with rare earth metals.
PL
W artykule przedstawiono wpływ czasu głębokiej obróbki kriogenicznej na właściwości mikromechaniczne oraz tribologiczne stopów magnezu WE43 i WE54. Stopy poddano głębokiej obróbce kriogenicznej w temperaturze ciekłego azotu (-196°C) w czasie od 2 do 48 h. Testy tribologiczne wykonano w ruchu obrotowym oraz w ruchu posuwisto-zwrotnym liniowym. Badania śladów zużycia wykonano za pomocą pomiarów profilografometrycznych oraz mikroskopowych. Przeprowadzone testy wskazują, że głęboka obróbka kriogeniczna wpływa korzystnie na parametry mikromechaniczne, mechaniczne i tribologiczne obu badanych stopów. Wykazano również, że istotne znaczenie na efekt obróbki kriogenicznej ma czas wymrażania. Stwierdzono między innymi blisko 10% wzrost twardości modułu Younga oraz wynikające z poprawy właściwości mechanicznych – 35% ograniczenie zużycia tribologicznego objętościowego i 2-krotne obniżenie zużycia liniowego wraz ze wzrostem czasu wymrażania w stosunku do materiału w stanie dostawy. Głęboka obróbka kriogeniczna o odpowiednio dobranym czasie wymrażania pozwala na poprawę trwałości eksploatacyjnej stopów magnezu z metalami ziem rzadkich.
Czasopismo
Rocznik
Tom
Strony
7--16
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr., wz.
Twórcy
  • The University of Silesia, Faculty of Science and Technology, Institute of Materials Engineering, 75 Pułku Piechoty 1A Street, 41-500 Chorzów, Poland
  • The University of Silesia, Faculty of Science and Technology, Institute of Materials Engineering, 75 Pułku Piechoty 1A Street, 41-500 Chorzów, Poland.
Bibliografia
  • 1. Satya Prasad S.V., Prasad S.B., Verma K., Kumar Mishra R., Kumar V., Singh S., The role and significance of Magnesium in modern day research-A review, Journal of Magnesium and Alloys 10 (1),2022, 1-61.
  • 2. Kainer K.U., Magnesium-Alloys and Technologies, WILEY-VCH Verlag GmbH & Co, KG a A,Weinheim, 2003.
  • 3. Witte F., Fischer J., Nellesen J., Vogt C., Vogt J., Donath T., In vivo corrosion and corrosion protection of magnesium alloy LAE442, Acta Biomaterialia, 6, 2010, 1792-1799.
  • 4. Witte F., The history of biodegradable magnesium implants: a review, Acta Biomaterialia, 6, 2010,1680-1692.
  • 5. Staiger M.P., Pietak A.M., Huadmai J., Dias G., Magnesium and its alloys as orthopedic biomaterials:A review, Biomaterials 27, 2006, 1728-1734.
  • 6. Lentz M., Risse M., Schaefer N., et al.: Strength and ductility with {10͞11} — {10͞12} double twinning in a magnesium alloy, Nat. Commun. 7, 2016, p. 11068.
  • 7. Wang J., Xu J., Liu W. et al., Biodegradable Magnesium (Mg) Implantation Does Not Impose Related Metabolic Disorders in Rats with Chronic Renal Failure, Sci. Rep. 6, 2016, 26341.
  • 8. Castellani C.,Lindtner R.A., Hausbrandt P., et.al., Bone–implant interface strength and osseointegration:Biodegradable magnesium alloy versus standard titanium control, Acta Biomaterialia 7, 2011, 432–440.
  • 9. Agha N.A., Willumeit-Römer R., Laipple D., Luthringer B., Feyerabend F., The degradation interface of magnesium based alloys in direct contact with human primary osteoblast cells, PLoS ONE, 11(6),2016, e0157874.
  • 10. López H.Y., Cortés-Hernández D.A., Escobedo S., Mantovani D., In Vitro Bioactivity Assessment of Metallic Magnesium, Key Eng Mater 309-311, 2006, 453-456.
  • 11. Babak J., Kalleigh M., Xinnan W., Amanda B., Biodegradable Magnesium-based alloys for bone repair applications: prospects and challenges, Biomed. Sci. Instrum. 56, 2020, 292–304.
  • 12. Kirkland N.T., Kolbeinsson I., Woodfield T., Dias G.J., Staiger M.P., Synthesis and properties of topologically ordered porous magnesium, Mater. Sci. Eng.: B 176(20), 2011, 1666–1672.
  • 13. Staiger M.P., Kolbeinsson I., Kirkland N.T., Nguyen T., Dias G., Woodfield T.B., Synthesis of topologically-ordered open-cell porous magnesium, Mater. Lett. 64(23), 2010, 2572–2574.
  • 14. Kirkland N.T., Kolbeinsson I., Woodfield T.I.M., Dias G., Staiger M.P., Processing-property relationships of as-cast magnesium foams with controllable architecture, Int. J. Mod. Phys. B 23, 2009, 1002–1008.
  • 15. Virtanen S., Biodegradable Mg and Mg alloys: corrosion and biocompatibility, Materials Science and Engineering B, 176, 2011, 1600-1608.
  • 16. Song G.L., Song S.Z., A possible biodegradable magnesium implant material, Adv. Eng. Mater., 9,2007, 298–302.
  • 17. Wang J.L., Xu J.K., Hopkins C., Chow D.H.K., Qin L., Biodegradable Magnesium-based implants in orthopedics—a general review and perspectives, Adv. Sci. 7(8), 2020, 1902443–1902443.
  • 18. Darwin D., Mohan Lal D., Nagarajan G., Optimization of cryogenic treatment to maximize the wear resistance of 18% Cr martensitic stainless steel by Taguchi method, J. of Mat. Proc. Tech. 195, 2008,241-247.
  • 19. Bensely A., Prabhakaran A., Mohan Lal D., Nagarajan G., Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment, Cryogenics 45, 2005, 747-754.
  • 20. Leskovšek V., Kalin M., Vižintin J., Influence of deep-cryogenic treatment on wear resistance of vacuumheat-treated HSS, Vacuum 80, 2006, 507-518.
  • 21. Sonar T., Lomte S., Gogte C., Cryogenic Treatment of Metal –A Review. Mater. Today Proc. 2018, 5,25219–25228.
  • 22. Preciado M., Bravo P.M., Alegre J.M., Effect of Low Temperature Tempering Prior Cryogenic Treatmenton Carburized Steels. J. Mater. Process. Technol. 176, 2006, 41–44.
  • 23. Mohan Lal D., Renganarayanan S., Kalanidhi A., Cryogenic Treatment to Augment Wear Resistance of Tool and Die Steels, Cryogenics 41, 2001, 149–155.
  • 24. Da Silva F.J, Franco S.D., Machado, Á.R., Ezugwu E.O., Souza A.M., Performance of cryogenically treated HSS tools. Wear 261, 2006, 674–685.
  • 25. Öteyaka M.Ö., Karahisar B., Öteyaka H.C., The Impact of Solution Treatment Time (T6) and Deep Cryogenic Treatment on the Microstructure and Wear Performance of Magnesium Alloy AZ91. J. of Materi Eng and Perform. 29, 2020, 5995–6001.
  • 26. Liu J., Li G., Chen D., Chen Z., Effect of Cryogenic Treatment on Deformation Behavior of As-cast AZ91 Mg Alloy. Chin. J. Aeronaut. 25(6), 2012, 931–936.
  • 27. Liu Y., Jin B., Shao S., Li D., Zeng X., Xu C., Dry Sliding Wear Behavior of Mg-Zn-Gd Alloy beforeand after Cryogenic Treatment. Tribol. Trans. 57, 2014, 275–282.
  • 28. Amini K., Akhbarizadeh A., Javadpour S., Investigating the Effect of Quench Environment and Deep Cryogenic Treatment on the Wear Behavior of AZ91. Mater. Des. 1980-2015, 2014, 154–160.
  • 29. Barylski A., Aniołek K., Dercz G., Kupka M., Kaptacz S., The effect of deep cryogenic treatment and precipitation hardening on the structure, micromechanical properties and wear of the Mg-Y-Nd-Zralloy. Wear 468–469, 2020, 203587.
  • 30. Barylski A., Aniołek K., Dercz G., Kupka M., Matuła I., Kaptacz S., The Sclerometrical, Mechanical,and Wear Behavior of Mg-Y-Nd Magnesium Alloy after Deep Cryogenic Treatment Combined with Heat Treatment. Materials 14, 2021, 1218.
  • 31. Barylski A., Aniołek K., Kupka M., Dworak M., The effect of variable load on the tribological properties of magnesium alloy WE54 after precipitation hardening. Tribologia 4, 2017, 11-15.
  • 32. Barylski A., Aniołek K., Dercz G., Kowalewski P., Kaptacz S., Rak J., Kupka M., Investigation of micromechanical properties and tribological behavior of WE43 magnesium alloy after deep cryogenic treatment combined with precipitation hardening. Materials 14, 2021, 7343.
  • 33. ISO 14577-4. Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 4: Test Method for Metallic and Non-Metallic Coatings; European Committee for Standardization: Brussels, Belgium, 2016.
  • 34. Oliver W.C., Pharr G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. of Mater. Res. 7, 1992, 1564-1583.
  • 35. Czichos H., Becker S., Lexow J., Multilaboratory tribotesting: results from the VAMAS program on wear test methods, Wear 114, 1987, 109-130.
  • 36. ASTM G99-17, Standard Test Method for Wear Testing with a Pin-on-disk Apparatus, ASTM International, West Conshohocken, PA, 2017.
  • 37. ASTM Standard G133-05, Standard Test Method for Line arly Reciprocating Ball-on-Flat Sliding Wear,ASTM International, West Conshohocken, PA, 2016.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a5d4992-71c1-4f70-b0dc-681943dc0f14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.