PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance assessment and leakage analysis of feed water pre-heaters in natural gas-fired steam power plants

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The performance of feed water pre-heaters (FWH) at a steam power plant with a capacity of 200 MW is evaluated in this paper. The main objective of this study is to investigate the behavior of these FWHs in various cases. The effect of leakage of condensates on the condenser was also studied in detail. To do this, each FWH was studied separately and also in groups (LP, HP and both groups). While some of the results are exclusive to the studied power plant, others can be generalized to similar power plants. The results show that although LPH-1 and LPH-2 have the lowest exergy efficiency, they have the greatest effect on the efficiency of the cycle. Whereas HPH-6 and LPH-4 have the highest heat exchange (31.3 and 21.73 MW), LPH-2 and LPH-1 deliver the greatest positive effect on energy efficiency (0.81% and 0.61/0%). Moreover, the results show the particular importance of preventing any leakage of heater condensate. In the event of leakage along the route to the condensate of heaters, the most negative effect will be due to the HP heaters: 20 kg/s leakage in the HPHs line will cause an increase in CO2 production p.a. of roughly 10150 metric tons. Furthermore, energy efficiency and power produced will fall by 0.374% and 5.1 MW. In terms of the impact of leakages on the cooling tower, the study showed that LPH-1 and LPH-2 have the greatest effect. The effects of LP and HP FWHs on the energy efficiency of the cycle were 2.53% and 0.82%.
Rocznik
Strony
352--364
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
  • Mechanical and Energy Engineering Department, Shahid Beheshti University, Tehran, Iran
autor
  • Mechanical and Energy Engineering Department, Shahid Beheshti University, Tehran, Iran
autor
  • Young Researchers and Elite Club, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran
autor
  • Young Researchers and Elite Club, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran
Bibliografia
  • [1] J. Blazquez, R. Fuentes-Bracamontes, C. A. Bollino, N. Nezamuddin, The renewable energy policy paradox, Renewable and Sustainable Energy Reviews 82 (2018) 1–5.
  • [2] G. R. Ahmadi, D. Toghraie, Energy and exergy analysis of montazeri steam power plant in iran, Renewable and Sustainable Energy Reviews 56 (2016) 454–463.
  • [3] S. L. Dixon, Fluid Mechanics, Thermodynamics of Turbomachinery, 7th Edition, Pergamon Press, 2014.
  • [4] Iran detailed statistics of electricity industry, for strategic management, in Persian (accessed 4.10.2018) (2016). URL URL http://amar.tavanir.org.ir
  • [5] A. R. Seifi, O. A. Akbari, A. A. Alrashed, F. Afshary, G. A. S. Shabani, R. Seifi, M. Goodarzi, F. Pourfattah, Effects of external wind breakers of heller dry cooling system in power plants, Applied Thermal Engineering 129 (2018) 1124–1134.
  • [6] G. Ahmadi, O. A. Akbari, M. Zarringhalam, Energy and exergy analyses of partial repowering of a natural gas-fired steam power plant, International Journal of Exergy 23 (2) (2017) 149–168.
  • [7] S. N. Naserabad, A. Mehrpanahi, G. Ahmadi, Multi-objective optimization of hrsg configurations on the steam power plant repowering specifications, Energy 159 (2018) 277–293.
  • [8] G. Ahmadi, D. Toghraie, O. A. Akbari, Technical and environmental analysis of repowering the existing chp system in a petrochemical plant: A case study, Energy 159 (2018) 937–949.
  • [9] O. Akbari, A. Marzban, G. Ahmadi, Evaluation of supply boiler repowering of an existing natural gas-fired steam power plant, Applied Thermal Engineering 124 (2017) 897–910.
  • [10] G. R. Ahmadi, D. Toghraie, Parallel feed water heating repowering of a 200 mw steam power plant, Journal of Power Technologies 95 (4) (2015) 288–301.
  • [11] G. Ahmadi, D. Toghraie, A. Azimian, O. A. Akbari, Evaluation of synchronous execution of full repowering and solar assisting in a 200 mw steam power plant, a case study, Applied Thermal Engineering 112 (2017) 111–123.
  • [12] G. Ahmadi, O. A. Akbari, M. Zarringhalam, Energy and exergy analyses of partial repowering of a natural gas-fired steam power plant, International Journal of Exergy 23 (2) (2017) 149–168.
  • [13] G. Ahmadi, D. Toghraie, O. A. Akbari, Solar parallel feed water heating repowering of a steam power plant: a case study in iran, Renewable and Sustainable Energy Reviews 77 (2017) 474–485.
  • [14] G. Ahmadi, D. Toghraie, O. A. Akbari, Efficiency improvement of a steam power plant through solar repowering, International Journal of Exergy 22 (2) (2017) 158–182.
  • [15] G. P. Varma, T. Srinivas, Parametric analysis of steam flashing in a power plant using waste heat of cement factory, Energy Procedia 90 (2016) 99–106.
  • [16] A. Pourshaghaghy, The optimum pressure for working fluid in feed water heaters of steam power plants, Energy Equipment and Systems 4 (2) (2016) 245–253.
  • [17] A. Moghadassi, F. Parvizian, B. Abareshi, F. Azari, I. Alhajri, Optimization of regenerative cycle with open feed water heater using genetic algorithms and neural networks, Journal of Thermal Analysis and Calorimetry 100 (3) (2010) 757–761.
  • [18] S. Farhad, M. Saffar-Avval, M. Younessi-Sinaki, Efficient design of feedwater heaters network in steam power plants using pinch technology and exergy analysis, International journal of energy research 32 (1) (2008) 1–11.
  • [19] H. D. Akolekara, P. Srinivasan, J. Challa, Development of a simulation program to optimise process parameters of steam power cycles, International Journal of Thermal & Environmental Engineering 8 (1) (2014) 55–61.
  • [20] L. Jiping, H. Wei, W. Xin, H. Xiaoqu, C. Daotong, Y. Junjie, Theoretical investigation on the partial load feedwater heating system with thermal vapor compressor in a coal-fired power unit, Energy Procedia 75 (2015) 1102–1107.
  • [21] M. A. Antar, S. M. Zubair, The impact of fouling on performance evaluation of multi-zone feedwater heaters, Applied Thermal Engineering 27 (14-15) (2007) 2505–2513.
  • [22] J.-q. Xu, T. Yang, Y.-y. Sun, K.-y. Zhou, Y.-f. Shi, Research on vary ing condition characteristic of feedwater heater considering liquid level, Applied Thermal Engineering 67 (1-2) (2014) 179–189.
  • [23] M. Álvarez-Fernández, L. del Portillo-Valdés, C. Alonso-Tristán, Thermal analysis of closed feedwater heaters in nuclear power plants, Applied Thermal Engineering 68 (1-2) (2014) 45–58.
  • [24] S. Espatolero, L. M. Romeo, C. Cortés, Efficiency improvement strategies for the feedwater heaters network designing in supercritical coal- fired power plants, Applied Thermal Engineering 73 (1) (2014) 449– 460.
  • [25] S. Hossienalipour, S. Karbalaee, H. Fathiannasab, Development of a model to evaluate the water level impact on drain cooling in horizontal high pressure feedwater heaters, Applied Thermal Engineering 110 (2017) 590–600.
  • [26] C. Goujon, T. Pauporté, A. Bescond, C. Mansour, S. Delaunay, J.- L. Bretelle, Effects of curative and preventive chemical cleaning processes on fouled steam generator tubes in nuclear power plants, Nuclear Engineering and Design 323 (2017) 120–132.
  • [27] I. E. Cáceres, R. M. Montañés, L. O. Nord, Flexible operation of combined cycle gas turbine power plants with supplementary firing, Journal of Power Technologies 98 (2) (2018) 188–197.
  • [28] M. A. Gonzalez-Salazar, T. Kirsten, L. Prchlik, Review of the operational flexibility and emissions of gas-and coal-fired power plants in a future with growing renewables, Renewable and Sustainable Energy Reviews 82 (1) (2018) 1497–1513.
  • [29] Archive of Isfahan Mohammad Montazeri Power Station in Iran. URL http:en.persian-holding.ir/MMPowerplant
  • [30] Department of Environment, Islamic Republic of Iran, accessed 4.10.2018. URL https://en.doe.ir/Portal/Home/default.aspx
  • [31] C. Borgnakke, E. Richard, Fundamentals of thermodynamics, John Wiley & Sons, Inc, United States, 2009.
  • [32] I. Dincer, M. A. Rosen, Exergy: energy, environment and sustainable development, Newnes, 2012.
  • [33] M. Ameri, P. Ahmadi, A. Hamidi, Energy, exergy and exergoeconomic analysis of a steam power plant: A case study, International Journal of Energy Research 33 (5) (2009) 499–512.
  • [34] S. N. Naserabad, K. Mobini, A. Mehrpanahi, M. Aligoodarz, Exergyenergy analysis of full repowering of a steam power plant, Frontiers in Energy 9 (1) (2015) 54–67.
  • [35] TU Delft, Postbus, Delft, The Netherlands, Cycle-Tempo Manual, "Technical notes", Cycle-Tempo release 5.0- A program for thermodynamic modeling and optimization of energy conversion systems (2017).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a5ba3f2-34f4-4e12-a4ff-8d1b47ad5ecb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.