PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic model of a crankshaft assembly with two degrees of freedom

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, growing attention is directed towards energy efficiency and issues related to respecting energy. An extremely vital role at improving energy efficiency plays the cogeneration technologies. In the 2012/27/UE Directive [1], the gas turbines [2] in combination with heat recovery, combustion engines [3, 4], steam engines [4], fuel cells [5-7], microturbines [8], Rankine organic cycle [9, 10], Stirling engines [11-15], and others, were included among cogeneration technologies, in which electric energy is produced from waste heat in the combined process. In this work, the distributed generation sources have also been addressed. From the perspective of the article herein, the sources equipped with the crankshaft assembly have been particularly emphasised. This mechanism converts chemical energy of, among others, fuel or working element into mechanical energy (the piston reciprocating motion is converted into rotary motion of a crankshaft). In this work, the physical model of the crankshaft assembly has been shown, with two degrees of freedom. On the basis of analysis of the physical model (with the static mass reduction), a single-piston simulation model has been developed of the crankshaft assembly, using the Matlab&Simulink software. On the basis of the analysis of the system, the motion equations have been derived, which served the purpose of building the simulation model. Because of the conducted simulations, the curves of displacement, velocity, and piston acceleration have been presented, and, respectively, the angular displacement, angular velocity, and angular acceleration of the crankshaft. The constructed model should be seen as a part of a multi-piston working mechanism in a, for example, Stirling engine.
Twórcy
  • Warsaw University of Technology Faculty of Automotive and Construction Machinery Engineering Narbutta Street 84, 02-524 Warsaw, Poland tel.: +48 22 2348117, fax: +48 22 2348121
autor
  • Warsaw University of Technology Faculty of Automotive and Construction Machinery Engineering Narbutta Street 84, 02-524 Warsaw, Poland tel.: +48 22 2348117, fax: +48 22 2348121
autor
  • Warsaw University of Technology Faculty of Automotive and Construction Machinery Engineering Narbutta Street 84, 02-524 Warsaw, Poland tel.: +48 22 2348117, fax: +48 22 2348121
autor
  • Warsaw University of Technology Faculty of Automotive and Construction Machinery Engineering Narbutta Street 84, 02-524 Warsaw, Poland tel.: +48 22 2348117, fax: +48 22 2348121
Bibliografia
  • [1] Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC.
  • [2] Nkoin, B., Pilidis, P., Nikolaidis, T., Performance Assessment of Simple and Modified Cycle Turboshaft Gas Turbines, Propulsion and Power Research, Vol. 2, No. 2, pp. 96-106, 2013.
  • [3] Wierzbicki, S., Laboratory Control and Measurement System of a Dual-Fuel Compression Ignition Combustion Engine Operating in a Cogeneration System, Solid State Phenomena, Vol. 210, pp. 200-205, 2014.
  • [4] Fu, J., Liu, J., Ren, C., Wang, L., Deng, B., Xu, Z., An Open Steam Power Cycle Used for IC Engine Exhaust Gas Energy Recovery, Energy, No. 44, pp. 544-554, 2012.
  • [5] Szczęśniak, A., Milewski, J., The Reduced Order Model of a Proton–Conducting Solid Oxide Fuel Cell, Journal of Power Technologies, Vol. 94, No. 2, pp. 122-127, 2014.
  • [6] Milewski, M., Discepoli, G., Desideri, U., Modeling the Performance of MCFC for Various Fuel and Oxidant Compositions, International Journal of Hydrogen Energy, Vol. 39, pp. 11713-11721, 2014.
  • [7] Stempiena, J. P., Sunc Q. H., Chan, S., Solid Oxide Electrolyzer Cell Modeling: A Review, Journal of Power Technologies, Vol. 93, No. 4, pp. 216-246, 2013.
  • [8] Ismail, M. S., Moghavemi, M., Mahlia, T. M. I., Current Utilization of Microturbines as a Part of a Hybrid System in Distributed Generation Technology, Renewable and Sustainable Energy Reviews, Vol. 21, pp. 142-152, 2013.
  • [9] Shahinfard, S., Beyene, A., Regression Comparison of Organic Working Mediums for Low Grade Heat Recovery Operating on Rankine Cycle, Journal of Power Technologies, Vol. 93, No. 4, pp. 257-270, 2013.
  • [10] Wang, T., Zhang, Y., Shu, C., A Review of Researches on Thermal Exhaust Heat Recovery with Rankine Cycle, Renewable and Sustainable Energy Reviews, No. 15, pp. 2862-2871, 2011.
  • [11] Chmielewski A., Gumiński R., Radkowski S., Szulim P., Experimental Research and Application Possibilities of Microcogeneration System with Stirling Engine, Journal of Power Technologies (Polish Energy Mix), pp. 1-9, 2015.
  • [12] Renzi, M., Brandoni, C., Study and Application of a Regenerative Stirling Cogeneration Device Based on Biomass Combustion, Applied Thermal Engineering, Vol. 67, pp. 341-351, 2014.
  • [13] Xiao, G., Chen, C., Shi, B., Cen, K., Ni, M., Experimental Study on Heat Transfer of Oscillating Flow of a Tubular Stirling Engine Heater, International Journal of Heat and Mass Transfer, Vol. 71, pp. 1-7, 2014.
  • [14] Cheng, C. H., Yang, H. S., Keong, L., Theoretical and Experimental Study of a 300W Beta–Type Stirling Engine, Energy, Vol. 59, pp. 590-599, 2013.
  • [15] Li, T., Tang, D., W., Li, Z., Du, J., Zhou, T., Jia, Y., Development and Test of a Stirling Engine Driven by Waste Gases for the Micro–CHP System, Applied Thermal Engineering Vol. 33-34, pp. 119-123, 2012.
  • [16] Directive 2009/28/EC of the council of 23 april 2009, on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.
  • [17] Directive 2004/8/EC of the European Parliament and of the council of 11 February 2004 on the promotion of cogeneration based on a useful heat demand in the internal energy market and amending Directive 92/42/EC.
  • [18] CO EUR 13 CONCL 5, Ramy polityki klimatyczno-energetycznej do roku 2030, Bruksela 24 października 2014.
  • [19] Chmielewski A., Radkowski S., Prosumer on the Energy Market: Case Study, Proceedings of the Institute of Vehicles, 2(102)/2015 [in print].
  • [20] Chmielewski A., Radkowski S., Rozwój odnawialnych źródeł energii na terenie Polski – wyzwania i problemy, Zeszyty Naukowe Instytutu Pojazdów, 3(99), s. 13-24, 2014.
  • [21] Kim, J. D., Rahimi, M., Future Energy Loads for a Large-Scale Adoption of Electric Vehicles in the City of Los Angeles: Impacts on Greenhouse Gas (GHG) Emissions, Energy Policy, Vol. 73, pp. 620-630, 2014.
  • [22] Chmielewski, A., Radkowski S., Smart grid jako jeden z elementów poprawy efektywności energetycznej Polski w perspektywie 2020, Zeszyty Naukowe Instytutu Pojazdów, 3(99), s. 25-34, 2014.
  • [23] Chmielewski, A., Gumiński, R., Radkowski S., Szulim P., Aspekty wsparcia i rozwoju mikro-kogeneracji rozproszonej na terenie Polski, Rynek Energii, Nr 5 (114), s. 94-101, 2014.
  • [24] Chmielewski, A., Lubikowski, K., Radkowski, S., Simulation of Energy Storage Work and Analysis of Cooperation Between Micro Combined Heat and Power (μCHP) Systems and Energy Storage, Rynek Energii, Nr 5 (117), pp. 126-133, 2015.
  • [25] Instytut energii odnawialnej, Energetyka rozproszona, Fundacja Instytut na rzecz Ekorozwoju, Warszawa 2011.
  • [26] Szczerbowski, R., Chomicz, W., Generacja rozproszona oraz sieci Smart Grid w budownictwie przemysłowym niskoenergetycznym, Polityka Energetyczna, T. 15, Z. 4, 2012.
  • [27] Loth, E., Dobrzyński, S., Bernhardt, M., Silniki samochodowe, WKiŁ, 1988.
  • [28] Jankowski, A., Jeż, M., Świder, A., Investigation of Non-Linear Dynamics of Crankshaft Assembly, Journal of KONES, Vol. 5, No. 1-2, pp. 217-227, 2000.
  • [29] Jeż, M., Świder, A., Analiza drgań nieliniowych jednocylindrowego silnika tłokowego, Journal of KONES, Vol. 8, No. 3-4, pp. 98-105, 2001.
  • [30] Cheng, C., H., Yang, H. S., Jhou, B. Y., Chen, Y. C., Wang, Y. J., Dynamic Simulation of Thermal‒Lag Stirling Engines, Applied Energy, Vol. 108, pp. 466-476, 2013.
  • [31] Scollo, L. S., Valdez, P. E., Santamarina, S. R., Chini, M. R., Baron, J. H., Twin Cylinder Alpha Stirling Engine Combined Model and Prototype Redesign, International Journal of Hydrogen Energy, Vol. 38, pp. 1988-1996, 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a5a4b97-8018-4cec-a511-8b2a076a60f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.