Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
New data driven score tests for testing goodness of fit of the Poisson distribution are proposed. They are direct applications of the general construction of data driven goodness-of-fit tests for composite hypotheses developed in Inglot et al. (1997). By a simulation study it is shown that these tests perform almost equally well as the best known solutions for standard alternatives and outperform them for more difficult alternatives.
Czasopismo
Rocznik
Tom
Strony
115--126
Opis fizyczny
Bibliogr. 11 poz., tab.
Twórcy
autor
- Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] D. J. Best and J. C. W. Rayner, Goodness of fit for the Poisson distribution, Statist. Probab. Lett. 44 (1999), pp. 259-265.
- [2] J. Frey, An exact Kolmogorov-Smirnov test for the Poisson distribution with unknown mean, J. Stat. Comput. Simul. 82 (2012), pp. 1023-1033.
- [3] N. Gürtler and N. Henze, Recent and classical goodness-of-fit tests for the Poisson distribution, J. Statist. Plann. Inference 90 (2000), pp. 207-225.
- [4] T. Inglot and A. Janic, How powerful are data driven tests for uniformity, Appl. Math. 36 (2009), pp. 375-395.
- [5] T. Inglot, W. C. M. Kallenberg, and T. Ledwina, Data driven smooth test for composite hypotheses, Ann. Statist. 25 (1997), pp. 1222-1250.
- [6] B. Klar, Goodness-of-fit tests for discrete models based on the integrated distribution function, Metrica 49 (1999), pp. 53-69.
- [7] T. Ledwina and G. Wyłupek, On Charlier polynomials in testing Poissonity, Commun. Statist. Simul. Comput. 46 (2017), pp. 1918-1932.
- [8] S. G. Meintanis and Ya. Yu. Nikitin, A class of count models and a new consistent test for the Poisson distribution, J. Statist. Plann. Inference 138 (2008), pp. 3722-3732.
- [9] M. Nakamura and V. Pérez-Abreu, Use of an empirical probability generating function for testing a Poisson model, Canad. J. Statist. 21 (1993), pp. 149-156.
- [10] G. Schwarz, Estimating the dimension of a model, Ann. Statist. 6 (1978), pp. 461-464.
- [11] O. Thas and J. C. W. Rayner, Smooth tests for the zero-inflated Poisson distribution, Biometrics 61 (2005), pp. 808-815.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a5a34c1-6e5a-4a90-965f-732cebed3ef4