PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A strong and weak approximation scheme for stochastic differential equations driven by a time-changed Brownian motion

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper establishes a discretization scheme for a large class of stochastic differential equations driven by a time-changed Brownian motion with drift, where the time change is given by a general inverse subordinator. The scheme involves two types of errors: one generated by application of the Euler-Maruyama scheme and the other ascribed to simulation of the inverse subordinator. With the two errors carefully examined, the orders of strong and weak convergence are established. In particular, an improved error estimate for the Euler-Maruyama scheme is derived, which is required to guarantee the strong convergence. Numerical examples are attached to support the convergence results.
Rocznik
Strony
201--220
Opis fizyczny
Bibliogr. 29 poz., wykr.
Twórcy
autor
  • Winston-Salem, NC, USA
autor
  • Fordham University, 113 West 60th Street, Room 813, New York, NY 10023, USA
Bibliografia
  • [1] B. Baeumer and M. M. Meerschaert, Tempered stable Lévy motion and transient superdiffusion, J. Comput. Appl. Math. 233 (2010), pp. 2438-2448.
  • [2] D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resour. Res. 36 (6) (2000), pp. 1403-1412.
  • [3] N. H. Bingham, Limit theorems for occupation times of Markov processes, Z. Wahrsch. Verw. Gebiete 17 (1971), pp. 1-22.
  • [4] M. Burr, Weak convergence of stochastic integrals driven by continuous-time random walks, preprint, arXiv: 1110.0216 [math.PR].
  • [5] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC, 2003.
  • [6] M. Fischer and G. Nappo, On the moments of the modulus of continuity of Itô processes, Stoch. Anal. Appl. 28 (1) (2008), pp. 103-122.
  • [7] J. Gajda and M. Magdziarz, Fractional Fokker-Planck equation with tempered α-stable waiting times: Langevin picture and computer simulation, Phys. Rev. E 82 (2010), 011117.
  • [8] R. Gorenflo, F. Mainardi, E. Scalas, and M. Raberto, Fractional calculus and continuous-time finance. III: The diffusion limit, in: Mathematical Finance, M. Kohlmann and S. Tang (Eds.), Birkhäuser, Basel 2001, pp. 171-180.
  • [9] M. Hahn, K. Kobayashi, and S. Umarov, SDEs driven by a time-changed Lévy proces and their associated time-fractional order pseudo-differential equations, J. Theoret. Probab. 25 (1) (2012), pp. 262-279.
  • [10] J. Jacod, Calcul stochastique et problèmes de martingales, Lecture Notes in Math., Vol. 714, Springer, Berlin 1979.
  • [11] E. Jum and K. Kobayashi, A strong and weak approximation scheme for stochastic differential equations driven by a time-changed Brownian motion, preprint, arXiv: 1408.4377v1 [math.PR].
  • [12] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, corrected edition, Springer, 1992.
  • [13] K. Kobayashi, Stochastic calculus for a time-changed semimartingale and the associated stochastic differential equations, J. Theoret. Probab. 24 (3) (2011), pp. 789-820.
  • [14] M. Magdziarz, Black-Scholes formula in subdiffusive regime, J. Stat. Phys. 136 (2009), pp. 553-564.
  • [15] M. Magdziarz, Langevin picture of subdiffusion with infinitely divisible waiting times, J. Stat. Phys. 135 (2009), pp. 763-772.
  • [16] M. Magdziarz, Stochastic representation of subdiffusion processes with time-dependent drift, Stochastic Process. Appl. 119 (2009), pp. 3238-3252.
  • [17] M. Magdziarz, S. Orzeł, and A. Weron, Option pricing in subdiffusive Bachelier model, J. Stat. Phys. 145 (2011), pp. 187-203.
  • [18] M. Magdziarz and R. L. Schilling, Asymptotic properties of Brownian motion delayed by inverse subordinators, Proc. Amer. Math. Soc. 143 (2015), pp. 4485-4501.
  • [19] M. Magdziarz and T. Zorawik, Stochastic representation of fractional subdiffusion equation. The case of infinitely divisible waiting times, Lévy noise and space-time-dependent coefficients, Proc. Amer. Math. Soc. 144 (2016), pp. 1767-1778.
  • [20] M. M. Meerschaert and H.-P. Scheffler, Limit theorems for continuous-time random walks with infinite mean waiting times, J. Appl. Probab. 41 (2004), pp. 623-638.
  • [21] M. M. Meerschaert and H.-P. Scheffler, Triangular array limits for continuous time random walks, Stochastic Process. Appl. 118 (2008), pp. 1606-1633.
  • [22] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339 (1) (2000), pp. 1-77.
  • [23] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht 1991.
  • [24] P. Protter, Stochastic Integration and Differential Equations, second edition, Springer, New York 2004.
  • [25] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge 1999.
  • [26] M. J. Saxton and K. Jacobson, Single-particle tracking: Applications to membrane dynamics, Annu. Rev. Biophys. Biomol. Struct. 26 (1997), pp. 373-399.
  • [27] E. Scalas and N. Viles, A functional limit theorem for stochastic integrals driven by a time-changed symmetric α-stable Lévy process, Stochastic Process. Appl. 124 (1) (2014), pp. 385-410.
  • [28] M. J. Steele, Stochastic Calculus and Financial Applications, Springer, 2001.
  • [29] G. M. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos. Chaotic advection, tracer dynamics and turbulent dispersion, Phys. D 76 (1994), pp. 110-122.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a577b82-2b05-437d-9b54-3d2338f1551a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.