PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of the Structural and Physical Properties of the Thermoplastic Starch Film with Kaolinite and Beeswax Addition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to investigate the influence of kaolinite (KA) and beeswax (BW) addition on the structural and physical properties of thermoplastic starch (TPS) films. The casting method was applied and glycerol was used as a plasticizer. Microstructure analyzes were made by a stereoscopic and a scanning electron microscope. Tensile tests were carried out under static load conditions at three different deformation velocities of V=0.0001, 0.001, and 0.01 m/s. The studies of surfaces characteristic were performed using water contact angle and water vapor isotherm measurements. The most homogeneous structure of the surface with higher mean values of failure stress and elasticity modulus was observed for thermoplastic starch films with kaolinite addition. The significant reduction in dynamics changes of water contact angle (10%) of BW films in the time 0-20s as well as tensile strength decrease was noted (compared to pure TPS films). The research results suggest the validity of using BW and KA to improve the barrier and mechanical properties of TPS films. Further research should focus on to improve the starch-beeswax-kaolinite combination and increase the homogeneity of the structure of films in order to upswing their simultaneous impact on barrier and mechanical properties.
Twórcy
  • Department of Mechanical Engineering and Automatic Control, University of Life Sciences in Lublin, 28 Głęboka St., 20-612 Lublin, Poland
autor
  • Department of Mechanical Engineering and Automatic Control, University of Life Sciences in Lublin, 28 Głęboka St., 20-612 Lublin, Poland
autor
  • Institute of Agrophysics, Polish Academy of Sciences, 4 Doświadczalna St., 20-290 Lublin, Poland
  • Department of Mechanical Engineering and Automatic Control, University of Life Sciences in Lublin, 28 Głęboka St. 20-612 Lublin, Poland
Bibliografia
  • 1. Głogowska K., Majewski Ł., Garbacz T., TorŚwiątek A. The Effect of Ageing on Selected Properties of Polylactide Modified with Blowing Agents. Advances in Science and Technology Research Journal 2019; 13(4): 204–213.
  • 2. Beer-Lech K., Skic A. Skic K., Stropek Z., Arczewska M. Effect of Psyllium Husk Addition on the Structural and Physical Properties of Biodegradable Thermoplastic Starch Film. Materials 2022; 15: 4459
  • 3. Tóth A., Halász K. Characterization of edible biocomposite films directly prepared from psyllium seed husk and husk flour. Food Packaging. Shelf Life 2019; 20: 100299
  • 4. https://ec.europa.eu/commission/presscorner/detail/en/IP_21_3903; (access on 18 Day November 2021).
  • 5. EU Directive 2019/904 of the European Parliament and of the Council of 5 June 2019 on the Reduction of the Impact of Certain Plastic Products on the Environment (Text with EEA Relevance) PE/11/2019/REV/. Available online: http://data.europa.eu/eli/dir/2019/904/oj (accessed on 2 Day March 2022).
  • 6. Raghs H. A., Plastic Deformation, Mechanical and Adhesive Properties of Bio-Plastic Material. Advances in Science and Technology Research Journal 2019; 13(3): 1–15.
  • 7. García-Guzmán L., Cabrera-Barjas G., Soria-Hernández C.G., Castaño J., Guadarrama-Lezama, A.Y., Llamazares, S.R. Progress in Starch-Based Materials for Food Packaging Applications. Polysaccharides 2022; 3: 136–177.
  • 8. Lu P., Zhang M., Qian P., Zhu Q. Preparation and characterization of thermoplastic starch–kaolinite nanocomposite films. Polymer composites 2012; 33(6): 889–896.
  • 9. Gołacki K., Stropek Z., Kołodziej P., Gładyszewska, B., Zaremba, M., Rejak A. Effect of additives on strength characteristics of a biodegradable starch film. Przemysł Chemiczny 2014; 93: 728–731.
  • 10. Arman N.S.N., Chen R.S.,Ahmad S. Review of state of-the-art studies on the water absorption capacity of agricultural fiber-reinforced polymer composites for sustainable construction. Construction and Building Materials. 2021; 302: 124174.
  • 11. Walczak M., Szala M., Pieniak D. Effect of Water Absorption on Tribological Properties of Thermoplastic Matrix Composites Reinforced with Glass Fibres. Advances in Science and Technology Research Journal 2022; 16(2): 232–239.
  • 12. Żołek-Tryznowska Z., Kałuża, A. The Influence of Starch Origin on the Properties of Starch Films: Packaging Performance. Materials 2021; 14: 1146.
  • 13. Ardanuy M., Claramunt J., Toledo Filho R.D. Cellulosic fiber reinforced cementbased composites: a review of recent research, Construction and Building Materials. 2015; 79: 115–128.
  • 14. Khalid M., Ratnam C.T., Chuah T.G., Ali S., Choong T.S.Y. Comparative study of polypropylene composites reinforced with oil palm empty fruit bunch fiber and oil palm derived cellulose, Materials & Design. 2008; 29(1): 173–178.
  • 15. Robledo-Ortíz J.R., Gonzalez-Lopez M.E., Rodrigue D., Gutierrez-Ruiz J.F., Prezas-Lara F., Perez-Fonseca A.A. Improving the compatibility and mechanical properties of natural fibers green polyethylene biocomposites produced by rotational molding. Journal of Polymers and the Environment. 2020; 28(3): 1040–1049.
  • 16. Khan B., Niazi M.B.K., Samin G., Jahan Z. Thermoplastic Starch: A Possible Biodegradable Food Packaging Material-A Review. Journal of Food Process Engineering 2016; 40: 12447.
  • 17. Stropek Z., Gołacki K., Kołodziej P., Gładyszewska B., Samociuk W., Rejak A. Effect of polyvinyl alcohol and keratin on stress relaxation course in thermoplastic starch. Przemysł Chemiczny 2014; 93: 364–367.
  • 18. Krystyjan M., Khachatryan G., Khachatryan K., Konieczna-Molenda A., Grzesiakowska A. Kuchta-Gładysz M., Kawecka A., Grzebieniarz W., Nowak N. The Functional and Application Possibilities of Starch/Chitosan Polymer Composites Modified by Graphene Oxide. International Journal of Molecular Sciences 2022; 23: 59–56.
  • 19. Kwaśniewska A., Chocyk D., Gładyszewski G., Borc J., Świetlicki M., Gładyszewska B., The Influence of Kaolin Clay on the Mechanical Properties and Structure of Thermoplastic Starch Films. Polymers 2020; 12, 73: 1–10.
  • 20. Diyana Z. N., Jumaidin R., Selamat M. Z., Suan M. S. M. Thermoplastic starch/beeswax blend: Characterization on thermal mechanical and moisture absorption properties. International Journal of Biological Macromolecules 2021; 190: 224–232. S., Emmett P.H., Teller E. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society 1938; 60: 309–319.
  • 21. Brunauer S., Emmett P.H., Teller E. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society 1938; 60: 309–319.
  • 22. Cheng Y., Sun C., Zhai X, Zhang R, Zhang S, Sun C., Wang W., Hou H., Effect of lipids with different physical state on the physicochemical properties of starch/gelatin edible films prepared by extrusion blowing. International Journal of Biological Macromolecules 2021; 185: 1005–1014.
  • 23. Cheng Y., Gao S., Wang W., Hou H., Lim L.-T., Low temperature extrusion blown ε-polylysine hydrochloride-loaded starch/gelatin edible antimicrobial films. Carbohydrate Polymers 2021; 278: 118990.
  • 24. Huntrakul K., Yoksan R., Sane A., Harnkarnsujarit N., Effects of pea protein on properties of cassava starch edible films produced by blown-film extrusion for oil packaging. Food Packaging and Shelf Life 2020; 24: 100480
  • 25. Wang W., Zhang H., Jia R., Dai Y., Dong H., Hou H., Guo Q. High performance extrusion blown starch/polyvinyl alcohol/clay nanocomposite films. Food Hydrocolloids 2018; 79: 534–543.
  • 26. Acosta S., Jiménez A., Cháfer M., González-Martínez, C., Chiralt A. Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids 2015; 49: 135–143.
  • 27. Callegarin F., Quezada Gallo J. A., Debeaufort F., Voilley A.: Lipids and Biopackaging. Journal of the American Oil Chemists’ Society 1997; 74:1183–1192.
  • 28. Muscat D., Adhikari R., McKnight S., Guo Q., Adhikari B. The physicochemical characteristics and hydrophobicity of high amylose starch–glycerol films in the presence of three natural waxes. Journal of Food Engineering 2013; 119 (2): 205–219.
  • 29. Auras R., Arroyo B., Selke S., Production and Properties of Spin-Coated Cassava-Starch-Glycerol-Beeswax Films Starch/Stärke 2009; 61: 463–471.
  • 30. Arredondo-Ochoa T., Almendárez B.E.G.; Reyes A.A., Aldo; Rivera Pastrana D.M., Gutiérrez López G. F., Martín Belloso O., Regalado-González C. Design and characterization of corn starch edible films including beeswax and natural antimicrobials. Food Bioprocess Technology 2017; 10: 103–114.
  • 31. Sukhija S., Singh S., Riar C.S. Analyzing the effect of whey protein concentrate and psyllium husk on various characteristics of biodegradable film from lotus (Nelumbo nucifera) rhizome starch. Food Hydrocolloids 2016; 60: 128–137.
  • 32. Kwaśniewska A., Świetlicki M., Prószyński A., Gładyszewski G. The Quantitative Nanomechanical Mapping of Starch/Kaolin Film Surfaces by Peak Force AFM. Polymers. 2021; 13: 244.
  • 33. Białopiotrowicz, T. Wettability of starch gel films. Food Hydrocolloids. 2003, 17, 141–147.
  • 34. Bing-Ying L., Chao-Hua X., Qiu-Feng A., ShunTian J., Miao-Miao X. Fabrication of superhydrophobic coatings with edible materials for superrepelling non-Newtonian liquid foods. Chemical Engineering Journal 2021; 371, 833–841.
  • 35. Cheng Y., Zhai X., Wu Y., Li C., Zhang R., Sun C., Wang W., Hou H. Effects of natural wax types on the physicochemical properties of starch/gelatin edible films fabricated by extrusion blowing. Food Chemistry 2022; 134081.
  • 36. Ashaduzzaman M., Saha D., Rashid M.M. Mechanical and Thermal Properties of Self-Assembled Kaolin-Doped Starch-Based Environment-Friendly Nanocomposite Films. Journal of composites Science 2020; 4(2): 38.
  • 37. Šolc R., Gerzabek M.H., Lischka H., Tunega D. Wettability of kaolinite (001) surfaces – Molecular dynamic study. Geoderma 2011; 16: 47–54.
  • 38. Mujtaba M., Koç B., Salaberria A.M., Ilk S., Duman D.C., Akyüz L., Cakmak Y.S., Kaya M., Khawar K.M., Labidi J., Boufi S., Cakmak Y.S. Production of novel chia-mucilage nanocomposite films with starch nanocrystals. An inclusive biological and physicochemical perspective. International Journal Biological Macromolecules 2019; 133: 663–673.
  • 39. Krystyjan M., Khachatryan G., Ciesielski W., Buksa K., Sikora M. Preparation and characteristics of mechanical and functional properties of starch/Plantago psyllium seeds mucilage films. Starch 2017; 69: 1700014.
  • 40. Jenkins P.J., Donald A.M. The influence of amylose on starch granule structure. International Journal of Biological Macromolecules 1995; 17: 315–321.
  • 41. Lourdin D., Della Valle G., Colonna P. Influence of amylose content on starch films and foams. Carbohydrate Polymers 1995; 27: 261–270.
  • 42. Tarique J., Sapuan S.M., Khalina A. Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Scientific Reports 2021; 11: 13900.
  • 43. Singh A., Benjakul S., Prodpran T., Nuthong P. Effect of Psyllium (Plantago ovata Forks) Husk on Characteristics, Rheological and Textural Propeties of Threadfin Bream Surimi Gel. Foods 2021; 10: 1181.
  • 44. Li, X.; Yan, J.; Yu, T.; Zhang, B. Versatile nonfluorinated superhydrophobic coating with self-cleaning, anti-fouling, anti-corrosion and mechanical stability. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128701.
  • 45. André, V.; Zosel, A.D. Dynamic wetting on porous and non porous substrates. Influence of surface ten sion, viscosity and porosity. Ber. Bunsenges. Phys. Chem. 1994, 98, 429–434.
  • 46. Sing K. The use of nitrogen adsorption for the characterisation of porous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187–188,3–9.
  • 47. Caurie, M. Hysteresis phenomenon in foods. Int. J. Food Sci. Technol. 2007, 42, 45–49.
  • 48. Macht F., Eusterhues K., Pronk G.J., Totsche K.U. Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods, Applied Clay Science 2011; 53(1): 20–26.
  • 49. Reis M. O., Olivato J. B., Bilck A. P., Zanela J., Grossmann M. V. E., and Yamashita F. Biodegradable trays of thermoplastic starch/poly (lactic acid) coated with beeswax. Industrial Crops and Products 2018; 112: 481–487.
  • 50. Zhang Y., Simpson B. K., and Dumont M.-J. Effect of beeswax and carnauba wax addition on properties of gelatin films: A comparative study. Food Bioscience 2018; 26: 88–95.
  • 51. Yukselen-Aksoy Y., Kaya A. Method dependency of relationships between specific surface area and soil physicochemical properties. Applied Clay Science 2010; 50(2): 182–190.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a552775-04bb-4e22-aad0-95c1e64cff13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.