PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geostatistical methods for estimation of toxicity of marine bottom sediments based on the Gdańsk Basin area

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Toxicity assessment of environmental compartments, in particular sediments as a highly complex matrix, provides a more direct way to assess potential adverse effects of pollutants present in a sample in contrast to chemical analysis estimating only a quantitative level of xenobiotics. Interactions between chemicals, formations of derivatives and the influence of chemical properties of sediments such as the organic matter content causing the intensified sorption of hydrophobic pollutants suggest that a traditional approach to the sediment quality, based only on chemical analysis may be insufficient. The presented study describes the vertical and horizontal variability of toxicity of Gdańsk Basin sediments. Based on 128 surface sediments samples and using geostatistical methods, a prediction map for the EC50 parameter was created. This allowed the evaluation of the toxicity of the surface sediment layer at any selected point of the study area. The applied analysis can be functional for many other locations worldwide. In the present study, the hypothesis about the location of toxic sediments in the vicinity of Gdańsk Deep, outer Puck Bay and close to Vistula River mouth was further confirmed.
Rocznik
Strony
247--256
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
autor
  • Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
  • Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
autor
  • Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
autor
  • Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
Bibliografia
  • 1. ASTM (American Society for Testing and Materials). (2004). Standard Test Method for Assessing the Microbial Detoxification of Chemically Contaminated Water and Soil Using a Toxicity Test with a Luminescent Marine Bacterium. ASTM D5660-96. USA.
  • 2. Azur Environmental (1998). Microtox Basic Solid-phase Test (Basic SPT). Carlsbad, CA, USA.
  • 3. Bolałek J., Graca B. & Burska D. (2011a). Skład chemiczny wód interstycjalnych. in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 309–319), Warszawa: PIG-PIB. ISBN 978-83-7538-813-8
  • 4. Bolałek J., Graca B. & Burska D. (2011b), Gazy w osadach Morza Bałtyckiego, in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 320–325), Warszawa: PIG-PIB. ISBN 978-83-7538-813-8
  • 5. Calace N., Ciardullo S., Petronio B., Pietrantonio M., Abbodanzi F., Campisi T. & Cardellicchio N. (2005). Influence of chemical parameters (heavy metals, organic matter, sulphur and nitrogen) on toxicity of sediments from the Mar Piccolo (Taranto, Ionian Sea, Italy). Microchemical Journal. 79: 243–248.. DOI: 10.1016/j.microc.2004.10.005.
  • 6. Campisi T., Abbondanzi F., Casado-Martinez C., DelValls T.A., Guerra R. & Iacondini A. (2005). Effect of sediment turbidity and color on light output measurement for Microtoxs Basic Solid-Phase Test. Chemosphere 60: 9–15. DOI: 10.1016/j.chemosphere.2004.12.052.
  • 7. Chen Y.X, Chen H.L, Xu Y.T & Shen M.W. (2004). Irreversible sorption of pentachlorophenol to sediment:experimental observations. Environment International 30(1):31–37. DOI: 10.1016/S0160-4120(03)00145-4
  • 8. Cinti D., Poncia P.P., Procesi M., Galli G. & Quattrocchi F. (2013). Geostatistical techniques application to dissolved radon hazard mapping: An example from the western sector of the Sabatini Volcanic District and the Tolfa Mountains (central Italy). Applied Geochemistry 35: 312–324. DOI: 10.1016/j.apgeochem.2013.05.005.
  • 9. Cleveland L., Litte E.E., Petty J.D., Johnson B.T., Lebo J.A., Orazio C.E., Dionne J. & Crocket A. (1997). Toxicological and chemical screening of Antarctica sediments: Use of whole sediment toxicity testes Microtox, Mutatox and Semipermeable Membrane. Marine Pollution Bulletin 34: 194–202. ISSN: 0025-326X.
  • 10. Coya B., Marañón E. & Sastre H. (2000). Ecotoxicity assessment of slag generated in the process of recycling lead from waste batteries. Resources Conservation and Recycling 29: 291–300. ISSN: 0921-3449. DOI: 10.1016/S0921-3449(00)00054-9.
  • 11. Coz A., Rodríguez-Obeso O., Alonso-Santurde R., Álvarez-Guerra M., Andrés A., Viguri J.R., Mantzavinos D. & Kalogerakis N. (2008). Toxicity bioassays in core sediments from the Bay of Santander, northern Spain. Environmental Research 106: 304–312. DOI: 10.1016/j.envres.2007.05.009.
  • 12. Casado-Martínez M.C., Campisi T., Díaz A., Lo Re R., Obispo R., Postma J.F., Riba I., Sneekes A.C., Buceta J.L. & DelValls T.A. (2006). Interlaboratory assessment of marine bioassays to evaluate the environmental quality of coastal sediments in Spain. II. Bioluminescence inhibition test for rapid sediment toxicity assessment. Ciencias Marinas 32: 129–138. ISSN: 0185-3880.
  • 13. Graca B. & Burska D. (2011). Czynniki kształtujące zawartość węgla organicznego i substancji biogenicznych w osadach. in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 309–319), Warszawa: PIG-PIB. ISBN 978-83-7538-813-8
  • 14. Granberg M.E., Gunnarsson J..S, Hedman J.E., Rosenberg R. & Jonsson P. (2008). Bioturbation-driven release of organic contaminants from Baltic Sea sediments mediated by the invading polychaete Marenzelleria neglecta. Environ Sci Technol. 42(4): 1058–65.
  • 15. Hedman J.E. (2008). Fate of contaminants in Baltic Sea sediment ecosystems: the role of bioturbation. Doctoral Thesis. Stockholm University.
  • 16. Jerosch K. (2013). Geostatistical mapping and spatial variability of surficial sediment types on the Beaufort Shelf based on grain size data. Journal of Marine Systems 127: 5–13. DOI: 10.1016/j.jmarsys.2012.02.013.
  • 17. Johanson K., ver Hoef J.M. & Krivoruchko K. (2003). ArcGIS 9. Using ArcGIS Geostatistical Analyst. ESRI. DOI 10.1007/s00704-009-0140-y
  • 18. Keddy C.J., Greene J.C. & Bonnell M.A. (1995). Review of whole-organism bioassays: soil, freshwater sediment, and freshwater assessment in Canada. Ecotoxicology and Environmental Safety 30: 221–251. ISSN: 0147-6513.
  • 19. Kobusińska M., Skauradszun M. & Niemirycz E. (2014). Factors determining the accumulation of pentachlorophenol — a precursor of dioxins in bottom sediments of the Gulf of Gdańsk (Baltic Sea). Oceanological and Hydrobiological Studies 43(2): 154–164. DOI:10.2478/S13545-014-0128-9.
  • 20. Konat J. & Kowalewska G. (2001). Polychlorinated biphenyls PCBs in sediments of the southern Baltic Sea trends and fate. The Science of the Total Environment 280: 1–15. DOI: 10.1016/S0048-9697(01)00785-9.
  • 21. Kwan K.K. & Dutka B.J. (1995), Comparative assessment of two Solid-Phase toxicity bioassays: The Direct Sediment Toxicity Testing Procedure (DSTTP) and Microtox Solid Phase Test (SPT). Bulletin of Environmental Contamination and Toxicology 55: 338–346. DOI: 10.1007/BF00206670.
  • 22. Lahr J., Maas-Diepeveen J.L., Stuijfzand S.C., Leonards P.E.G., Druke J.M., Lucker S., Espeldoorn A., Kerkum L.C.M., van Stee L.L.P. & Hendriks A.J. (2003). Responses in sediment bioassays used in the Netherlands: can observed toxicity be explained by routinely monitored priority pollutants? Water Research 37: 1691–1710.. DOI: 10.1016/S0043-1354(02)00562-6.
  • 23. Larsson, P., Andersson, A., Bromam, D., Nordback, J. & Lundberg, E. (2000). Persistent organic pollutants (POPs) in the pelagic systems. Ambio 29(4): 202–209. DOI: 10.1579/0044-7447-29.4.202.
  • 24. Łukawska-Matuszewska K., Burska D. & Niemirycz E. (2009). Toxicity assessment by Microtox in sediments, pore waters and sediment saline elutriates in the Gulf of Gdańsk (Baltic Sea). Clean-Soil, Air, Water 37: 592–598. DOI: 10.1002/clen.200900021
  • 25. Macken A., Giltrap M., Foley B., McGovern E., McHugh B. & Davoren M. (2008). An integrated approach to the toxicity assessment of Irish marine sediments: Validation of established marine bioassays for the monitoring of Irish marine sediments. Environment International 34: 1023–1032. DOI: 10.1016/j.envint.2008.08.013. ISSN: 0160-4120.
  • 26. Mamindy-Pajany Y., Geret F., Roméo M., Hurel Ch. & Marmier N. (2012). Ex situ remediation of contaminated sediments using mineral additives: Assessment of pollutant bioavailability with the Microtox solid phase test. Chemosphere 86:1112–1116. DOI: 10.1016/j.chemosphere.2011.12.001.
  • 27. Morales-Caselles C., Kalman J., Micaelo C., Ferreira A.M., Vale C., Riba I. & DelValls T.A. (2008). Sediment contamination, bioavailability and toxicity of sediments affected by an acute oil spill: four years after the sinking of the tanker Prestige. Chemosphere 71: 1207–1213. DOI: 10.1016/j.chemosphere.2007.12.013.
  • 28. Morales-Caselles C., Riba I. & Ángel DelValls T. (2009). A weight of evidence approach for quality assessment of sediments impacted by an oil spill: The role of a set of biomarkers as a line of evidence. Marine Environmental Research 67: 31–37. DOI: 10.1016/j.marenvres.2008.10.003.
  • 29. Niemirycz E., Nitchthauser J., Staniszewska M., Nałęcz-Jawacki G. & Bolałek J. (2007). The Microtox biological test of surface waters and sediment in Poland. Oceanological and Hydrobiological Studies 36: 151–163. DOI: 10.2478/v10009-007-0030-5.
  • 30. Niemirycz E. (2008). Halogenated organic compounds in the environment in relation to climate change. Warsaw: Environmental Monitoring Library.
  • 31. Niemirycz E. (2011). Dopływ substancji chemicznych rzekami, in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 91–106). Warszawa: PIG-PIB. ISBN 978-83-7538-813-8.
  • 32. Niemirycz E. & Jankowska D. (2011). Concentration and profiles of PCDD/Fs in sediments of major polish rivers and the Gdańsk Basin — Baltic Sea. Chemosphere 85: 525–532. DOI: 10.1016/j.chemosphere.2011.08.014.
  • 33. Park K. & Hee S.Q. (2001). Effect of dust on the viability of Vibrio fischeri in the Microtox test. Ecotoxicology and Environmental Safety 50: 189–195. DOI: 10.1006/eesa.2001.2109.
  • 34. Parsons T.R., Maaita Y., Lalli, C.M. (1985). A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford.
  • 35. Pazdro K. (2004). Persistent organic pollutants in sediments from the Gulf of Gdańsk. Annual Set the Environment Protection. 6: 63–76.
  • 36. Pedersen E., Bjornstad E., Andersen H.V., Kjolholt J. & Poll C. (1998). Characterization of sediments from Copenhagen Harbour by use of biotestes. Water Science Technology 37: 233–240. ISSN: 0273-1223.
  • 37. Piccini Ch., Marchetti A. & Francaviglia R. (2014). Estimation of soil organic matter by geostatistical methods: Use of auxiliary information in agricultural and environmental assessment. Ecological Indicators 36: 301–314. DOI: 10.1016/j.ecolind.2013.08.009.
  • 38. Renz J.R. & Forster S. (2013). Are similar worms different? A comparative tracer study on bioturbation in the three sibling species Marenzelleria arctia, M. viridis, and M. neglecta from the Baltic Sea. Limnol. Oceanogr. 58(6): 2046–2058. DOI: 10.4319/lo.2013.58.6.2046.
  • 39. Ricking M., Beckman E. & Svenson A. (2002) PAHs and Microtox acute toxicity in contaminated sediments in Swede. J. Soils Sed. 2(3):129–136. DOI: 10.1007/BF02988464.
  • 40. Sahebjalal E. (2012). Application of Geostatistical Analysis for Evaluating Variation in Groundwater Characteristics. World Applied Sciences Journal 18(1): 135–141. DOI: 10.5829/idosi.wasj.2012.18.01.664
  • 41. Salizzato M., Pavoni B., Ghirardini A.V. & Ghetti P.F. (1998). Sediment toxicity measured using Vibrio fischeri related to the concentrations of organic (PCBs, PAHs) and inorganic (metals, sulphur) pollutants. Chemosphere 36: 2949–2968. DOI: 10.1016/S0045-6535(98)00001-0.
  • 42. Serafim A., Company R., Lopes B., Rereira C., Cravo A., Fonseca V.F., França S., Bebianno M.J. & Cabral H.N. (2013). Evaluation of sediment toxicity in different Portuguese estuaries: Ecological impact of metals and polycyclic aromatic hydrocarbons. Estuarine, Costal and Shelf Science 130: 30–41. DOI: 10.1016/j.ecss.2013.04.018.
  • 43. Smith J. & Smith P. (2007). Introduction to Environmental Modelling. New York: Oxford University Press.
  • 44. Sundqvist K. (2009). Sources of dioxins and other POPs to the marine environment: Identification and apportionment using pattern analysis and receptor modeling. Doctoral Thesis. Umeå University.
  • 45. Svenson A., Edsholt E., Ricking M., Remberger M. & Röttorp J. (1996). Sediment contaminats and Microtox Toxicity Tested in a Direct Contact Exposure Test. Environmental Toxicology and Water Quality. An International Journal 11: 293–300. DOI: 10.1002/(SICI)1098-2256(1996)11:4〈293::AID-TOX2〉3.0.CO;2-4
  • 46. Szefer P. (2002). Metals, metalloids and radionuclides in the Baltic Sea ecosystem. Elsevier Science. B.V., Amsterdam.
  • 47. Szymczak E., Skauradszun M. & Niemirycz E. (2013). Litologiczne uwarunkowania toksyczności powierzchniowych osadów dennych terenów ujściowych cieków Zatoki Gdańskiej. International Scientific Conference „Dioxins in the environment — science for health”.
  • 48. Świderska-Bróż M. (1987). Zjawiska sorpcji w wodach naturalnych oraz procesach oczyszczania wód. Ochrona środowiska. Wydawnictwo PZITS 521-2/3(32–33): 9–14
  • 49. Urbański J. (2012). GIS w badaniach przyrodniczych. Gdańsk: Wydawnictwo Uniwersytetu Gdanskiego.
  • 50. Urbański J. (2007). Fizyczna typologia dna Zatoki Gdańskiej. Atlas cyfrowy. Pracownia Geoinformacji, Zakład Oceanografii Fizycznej, Instytut Oceanografii UG.
  • 51. Uścinowicz Sz. (2011). Współczesne osady powierzchniowe i procesy sedymentacyjne. in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 309–319), Warszawa: PIG-PIB. ISBN 978-83-7538-813-8
  • 52. Van den Brink P.J. & Kater B.J. (2006). Chemical and biological evaluation of sediments from the Wadden Sea, the Netherlands. Ecotoxicology 15: 451–460. DOI: 10.1016/j.trac.2009.03.006.
  • 53. Vigano L., Arillo A., Buffagni A., Camusso M., Ciannarella R., Crosa G., Falugi C., Galassi S., Guzzella L., Lopez A., Mingazzini M., Pagnotta R., Patrolecco L., Tartari G. & Valsecchi S. (2003). Quality assessment of bed sediments of the Po River (Italy). Water Research 37: 501–518. DOI: 10.1016/S0043-1354(02)00109-4.
  • 54. Viguri J., Irabien M.J., Yusta I., Soto J., Gómez J., Rodríguez P., Martínez M., Irabien J.A. & Coz A. (2007). Physico-chemical and toxicological characterization of the historic estuarine sediments: a multidisciplinary approach. Environment International 33: 436–444. DOI:10.1016/j.envint.2006.10.005
  • 55. Webster R. & Oliver M.A. (2001). Geostatistics for Environmental Scientists. Wiley & Sons Ltd. Chichester.
  • 56. Zalewski M. (2011). Odpływ Wisłą związków azotu i fosforu na tle zmian produkcji pierwotnej rejonu Basenu Gdańskiego. Doctoral Thesis. University of Gdansk.
  • 57. Zhang J & He M. (2013). Effect of dissolved organic matter on sorption and desorption of phenanthrene onto black carbon. Journal of Environmental Sciences 25(12):2378–2383. DOI: 10.1016/S1001-0742(12)60328-3
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a5487f4-0382-4732-810d-5292c865e290
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.