PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental evidence of the double-porosity effects in geomaterials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Double-porosity is an important characteristic of microstructure in a large range of geomaterials. It designs porous media with connected fissures/fractures or aggregated soils. The origin of double-porosity can be natural or/and it can result from mechanical, chemical or biological damage. The presence of double-porosity can significantly affect the behaviour of geomaterials. In this paper we provide an experimental evidence of the double-porosity effects by performing laboratory experiments. Series of tracer dispersion experiments (in saturated and unsaturated steady-state water flow conditions) in a physical model of double-porosity geomaterial were carried out. For the comparative purposes, experiments of the same type were also performed in a singleporosity model medium. The results clearly showed that the doubleporosity microstructure leads to the non-Fickian behaviour of the tracer (early breakthrough and long tail) in both saturated and unsaturated cases.
Czasopismo
Rocznik
Strony
642--655
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
  • Institut National de la Recherche Scientifique, Centre Eau Terre Environnement (INRS-ETE), Québec, Canada
  • Faculty of Environment, Ho Chi Minh City University of Technology (HCMUT)/ Centre Asiatique de Recherche sur l’Eau (CARE), Ho Chi Minh City, Vietnam
  • Laboratoire de Mécanique et Génie Civil (LMGC), Montpellier, France
autor
  • Laboratoire I2M-TREFLE Université de Bordeaux, Bordeaux, France
Bibliografia
  • Barenblatt, G., I. Zheltov, and I. Kochina (1960), Basic concepts in the theory of seepage of homogeneous liquids in the fissured rocks, J. Appl. Math. Mech. 24, 5, 1286-1303, DOI: 10.1016/0021-8928(60)90107-6.
  • Berkowitz, B., H. Scher, and S.E. Silliman (2000), Anomalous transport in laboratory-scale, heterogeneous porous media, Water Resour. Res. 36, 1, 149-158, DOI: 10.1029/1999WR900295.
  • Bijeljic, B., P. Mostaghimi, and M.J. Blunt (2013), Insights into non-Fickian solute transport in carbonates, Water Resour. Res. 49, 5, 2714-2728, DOI: 10.1002/wrcr.20238.
  • Carminati, A., A. Kaestner, P. Lehmann, and H. Flühler (2008), Unsaturated water flow across soil aggregate contacts, Adv. Water Resour. 31, 9, 1221-1232, DOI: 10.1016/j.advwatres.2008.01.008.
  • Carrera, J., X. Sánchez-Vila, I. Benet, A. Medina, G. Galarza, and J. Guimerà (1998), On matrix diffusion: formulations, solution methods and qualitative effects, Hydrogeol. J. 6, 1, 178-190, DOI: 10.1007/s100400050143.
  • Cassel, D.K., M.T. van Genuchten, and P.J. Wierenga (1975), Predicting anion movement in disturbed and undisturbed soils, Soil Sci. Soc. Am. J. 39, 6, 1015-1019, DOI: 10.2136/sssaj1975.03615995003900060008x.
  • Daïan, J.-F. (2007), Mercury porometry – XDQ model, Université Joseph Fourier, Grenoble, 97 pp., http://www.lthe.fr/LTHE3/IMG/pdf/Le-Modele-XDQ.pdf (in French).
  • Delay, F., G. Porel, and G. de Marsily (1997), Predicting solute transport in heterogeneous media from results obtained in homogeneous ones: An experimental approach, J. Contam. Hydrol. 25, 1-2, 63-84, DOI: 10.1016/S0169-7722(96)00020-4.
  • Dentz, M., T. Le Borgne, A. Englert, and B. Bijeljic (2011), Mixing, spreading and reaction in heterogeneous media: A brief review, J. Contam. Hydrol. 120-121, 1-17, DOI: 10.1016/j.jconhyd.2010.05.002.
  • Elrick, D.E., and L.K. French (1966), Miscible displacement patterns on disturbed and undisturbed soil cores, Soil Sci. Soc. Am. J. 30, 2, 153-156, DOI: 10.2136/sssaj1966.03615995003000020007x.
  • Flavigny, E., J. Desrues, and B. Palayer (1990), Note technique – Le sable d’Hostun ‘‘RF’’, Rev. Fr. Geotech. 53, 67-70 (in French).
  • Fourar, M., and G. Radilla (2009), Non-Fickian description of tracer transport through heterogeneous porous media, Transp. Porous Med. 80, 3, 561-579, DOI: 10.1007/s11242-009-9380-7.
  • Gaber, H.M., W.P. Inskeep, J.M. Wraith, and S.D. Comfort (1995), Nonequilibrium transport of atrazine through large intact soil cores, Soil Sci. Soc. Am. J. 59, 1, 60-67, DOI: 10.2136/sssaj1995.03615995005900010009x.
  • Gouze, P., T. Le Borgne, R. Leprovost, G. Lods, T. Poidras, and P. Pezard (2008), Non-Fickian dispersion in porous media: 1. Multiscale measurements using single-well injection withdrawal tracer tests, Water Resour. Res. 44, 6, W06426, DOI: 10.1029/2007wr006278.
  • Haws, N.W., B.S. Das, and P.S.C. Rao (2004), Dual-domain solute transfer and transport processes: evaluation in batch and transport experiments, J. Contam. Hydrol. 75, 3-4, 257-280, DOI: 10.1016/j.jconhyd.2004.07.001.
  • Kätterer, T., B. Schmied, K.C. Abbaspour, and R. Schulin (2001), Single- and dualporosity modelling of multiple tracer transport through soil columns: effects of initial moisture and mode of application, Eur. J. Soil Sci. 52 ,1, 25-36, DOI: 10.1046/j.1365-2389.2001.00355.x.
  • Knudby, C., and J. Carrera (2005), On the relationship between indicators of geostatistical, flow and transport connectivity, Adv. Water Resour. 28, 4, 405-421, DOI: 10.1016/j.advwatres.2004.09.001.
  • Koch, S., and H. Flühler (1993), Solute transport in aggregated porous media: Comparing model independent and dependent parameter estimation, Water Air Soil Poll. 68, 1-2, 275-289, DOI: 10.1007/Bf00479408.
  • Koestel, J.K., J. Moeys, and N.J. Jarvis (2012), Meta-analysis of the effects of soil properties, site factors and experimental conditions on solute transport, Hydrol Earth Syst. Sc. 16, 6, 1647-1665, DOI: 10.5194/hess-16-1647-2012.
  • Köhne, J.M., S. Köhne, and J. Šimůnek (2009), A review of model applications for structured soils: a) Water flow and tracer transport, J. Contam. Hydrol. 104, 1-4, 4-35, DOI: 10.1016/j.jconhyd.2008.10.002.
  • Köhne, S., B. Lennartz, J.M. Köhne, and J. Šimůnek (2006), Bromide transport at a tile-drained field site: experiment, and one- and two-dimensional equilibrium and non-equilibrium numerical modeling, J. Hydrol. 321, 1-4, 390-408, DOI: 10.1016/j.jhydrol.2005.08.010.
  • Le Goc, R., J.-R. de Dreuzy, and P. Davy (2010), Statistical characteristics of flow as indicators of channeling in heterogeneous porous and fractured media, Adv. Water Resour. 33, 3, 257-269, DOI: 10.1016/j.advwatres.2009.12.002.
  • Levy, M., and B. Berkowitz (2003), Measurement and analysis of non-Fickian dispersion in heterogeneous porous media, J. Contam. Hydrol. 64, 3-4, 203-226, DOI: 10.1016/S0169-7722(02)00204-8.
  • Lewandowska, J., A. Szymkiewicz, W. Gorczewska, and M. Vauclin (2005), Infiltration in a double-porosity medium: Experiments and comparison with a theoretical model, Water Resour. Res. 41, 2, W02022, DOI: 10.1029/2004wr003504.
  • Lewandowska, J., T.D. Tran Ngoc, M. Vauclin, and H. Bertin (2008), Water drainage in double-porosity soils: Experiments and micro-macro modeling, J. Geotech. Geoenviron. Eng. 134, 2, 231-243, DOI: 10.1061/(ASCE)1090-0241(2008)134:2(231).
  • Matheron, G., and G. de Marsily (1980), Is transport in porous media always diffusive? A counterexample, Water Resour. Res. 16, 5, 901-917, DOI: 10.1029/Wr016i005p00901.
  • Nkedi-Kizza, P., J.W. Biggar, M.T. van Genuchten, P.J. Wierenga, H.M. Selim, J.M. Davidson, and D.R. Nielsen (1983), Modeling tritium and chloride 36 transport through an aggregated oxisol, Water Resour. Res. 19, 3, 691-700, DOI: 10.1029/WR019i003p00691.
  • Pot, V., J. Šimůnek, P. Benoit, Y. Coquet, A. Yra, and M.-J. Martínez-Cordón (2005), Impact of rainfall intensity on the transport of two herbicides in undisturbed grassed filter strip soil cores, J. Contam. Hydrol. 81, 1-4, 63-88. DOI: 10.1016/j.jconhyd.2005.06.013.
  • Rao, P.S.C., D.E. Rolston, R.E. Jessup, and J.M. Davidson (1980), Solute transport in aggregated porous media : Theoretical and experimental evaluation, Soil Sci. Soc. Am. J. 44, 6, 1139-1146, DOI: 10.2136/sssaj1980.03615995004400060003x.
  • Scheidegger, A.E. (1958), The random-walk model with autocorrelation of flow through porous media, Can. J. Phys. 36, 6, 649-658, DOI: 10.1139/p58-070.
  • Seyfried, M.S., and P.S.C. Rao (1987), Solute transport in undisturbed columns of an aggregated tropical soil: Preferential flow effects, Soil Sci. Soc. Am. J. 51, 6, 1434-1444, DOI: 10.2136/sssaj1987.03615995005100060008x.
  • Silliman, S.E., and E.S. Simpson (1987), Laboratory evidence of the scale effect in dispersion of solutes in porous media, Water Resour. Res. 23, 8, 1667-1673, DOI: 10.1029/WR023i008p01667.
  • Sternberg, S.P.K., J.H. Cushman, and R.A. Greenkorn (1996), Laboratory observation of nonlocal dispersion, Transp. Porous Media 23, 2, 135-151, DOI:10.1007/BF00178123.
  • Szymkiewicz, A., J. Lewandowska, R. Angulo-Jaramillo, and J. Butlańska (2008), Two-scale modeling of unsaturated water flow in a double-porosity medium under axisymmetric conditions, Can. Geotech. J. 45, 2, 238-251, DOI: 10.1139/T07-096.
  • Tran Ngoc, T.D. (2008), Transport de solutés dans un milieu à double-porosité non saturé. Modélisation par homogénéisation et application, Université Joseph Fourier – Grenoble, Ph.D. Thesis, 185 pp. (in French).
  • Tran Ngoc, T.D., J. Lewandowska, and H. Bertin (2007) Etude expérimentale de la dispersion dans un milieu à double porosité. In: 18éme Congrès Français de Mécanique, 27-31.08.2007, Grenoble, France, 6 pp. (CD-rom).
  • Tran Ngoc, T.D., J. Lewandowska, M. Vauclin, and H. Bertin (2011), Two-scale modeling of solute dispersion in unsaturated double-porosity media: Homogenization and experimental validation, Int. J. Numer. Anal. Meth. Geomech. 35, 14, 1536-1559, DOI: 10.1002/Nag.967.
  • van Genuchten, M.T., and P.J. Wierenga (1977), Mass transfer studies in sorbing porous media: II. Experimental evaluation with tritium (3 H2O), Soil Sci. Soc. Am. J. 41, 2, 272-278, DOI: 10.2136/sssaj1977.03615995004100020022x.
  • Warren, J.E., and P.J. Root (1963), The behavior of naturally fractured reservoirs, Soc. Pet. Eng. J. 3, 3, 245-255, DOI: 10.2118/426-PA.
  • Willmann, M., J. Carrera, and X. Sánchez-Vila (2008), Transport upscaling in heterogeneous aquifers: What physical parameters control memory functions? Water Resour. Res. 44, 12, W12437, DOI: 10.1029/2007wr006531.
  • Zinn, B., L.C. Meigs, C.F. Harvey, R. Haggerty, W.J. Peplinski, and C.F. von Schwerin (2004), Experimental visualization of solute transport and mass transfer processes in two-dimensional conductivity fields with connected regions of high conductivity, Environ. Sci. Technol. 38, 14, 3916-3926, DOI: 10.1021/Es034958g.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a527ca2-0562-42d1-895e-9c3ff20b1ce2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.