PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Convective Heat Transfer in Heat Exchangers Using Nanofluids: A Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Enhancing the Convective heat transfer in the carrier fluids, by augmenting the thermal conductivity in fluids, with nano particles is one of the passive techniques. Enhancement in the thermal conductivity in the carrier fluids can be achieved by suspending particles of nano-size into the base fluids, such colloidal suspensions are called as nanofluids. Nanofluids are proven fluids which improve the convective transfer of heat in the base fluids in the heat exchangers. But still, there are lot of challenges that are existing in understanding the mechanisms of enhancement of convective heat transfer for large scale applications. In this work, an attempt is made to summarize recent advancements on augmentation of convective heat transfer in heat exchangers in turbulent flows using various nanofluids and present various setbacks for the development of nanofluids for critical applications.
Twórcy
  • Department of Mechanical Engineering, Mahathma Gandhi Institute of Technology, Hyderabad, Telangana, India
  • Department of Mechanical Engineering, Annamalai University, Annamalai Nagar, Tamilnadu, India
  • Department of Mechanical Engineering, Mahathma Gandhi Institute of Technology, Hyderabad, Telangana, India
  • Department of Mechanical Engineering, CMR College of Engineering & Technology, Hyderabad, Telangana, India
Bibliografia
  • 1. Ajitha B., Divya A., Sreedhara Reddy P. 2013. Impact of pH on the properties of spherical silver nanoparticles capped by PVA. Advanced Materials Manufacturing & Characterization, 3(1), 403–406.
  • 2. Ali N., Teixeira J.A., Addali A.M. 2018. A review on nanofluids: fabrication, stability, and thermo physical properties. Journal of Nanomaterials, 1–33.
  • 3. Babar, Hamza, Ali H.M. 2019. Towards hybrid nanofluids: preparation, thermo-physical properties, applications, and challenges. Journal of Molecular Liquids.
  • 4. Babu S.R., K.P.V. Krishna Varma, Mohan K.S.S. 2022. Artificial neural network technique for estimating the thermo-physical properties of wateralumina nanofluid. Ecological Engineering & Environmental Technology, 23(2), 97–106.
  • 5. Brinkman H.C. 1952. The viscosity of concentrated suspensions and solutions, J. Chemistry Physics, 205, 571–581.
  • 6. Buongiorno J. 2006. Convective transport in nanofluids. J Heat Transf, 128, 240–250.
  • 7. Choi S.U.S., Eastman J.A. 1995. Enhancing Thermal Conductivity of Fluids with Nanoparticles. Argonne National Lab.
  • 8. Dasaroju G., Sharma P., Sharma S. 2014. Review on thermal properties of nano fluids and heat transfer applications. Renewable and Sustainable Energy Reviews, 74, 638–670.
  • 9. de Oliveira P.F.M., Torresi R.M., Emmerling F., Camargo P.H.C. 2020. Challenges and opportunities in the bottom up mechano- chemical synthesis of noble metal particles. Journal of Materials Chemistry A, 16114–16141.
  • 10. Deshmukh R., Thaokar R., Mehra A. 2013. Ionic liquid assisted synthesis and crystal habit control.
  • 11. Drew D.A., Passman S.L. 1999. Theory of Multicomponent Fluids. Springer, Berlin.
  • 12. Eastman J.A., Choi S.U., Li S., Thompson L.J., Lee S. Enhanced thermal conductivity through the development of nano fluids. In: Proceedings of the 1996 MRS Fall Symposium.
  • 13. Eastman J.A., Choi S.U.S., Li S., Yu W., Thompson L.J. 2001 Anomalously increased effective thermal
  • 14. Gnielinski V. 1976, New equations for heat and mass transfer in turbulent pipe and channel flow, Int. Chem. Eng. 16, 359–368.
  • 15. Gupta M., Singha V., Kumara R., Said Z. 2017. A review on thermo physical properties of nanofluids condition. International Journal of Thermal Sciences, 137, 55–63.
  • 16. Guzmana A., Arroyoa J., Verdea L., Rengifo J. 2015. Synthesis and characterization of copper nanoparticles/polyvinyl chloride (Cu NPs/PVC) nanocomposites. Procedia Materials Science, 9, 298–304.
  • 17. Hojjat M., Etemad S.G., Bagheri R., Thibault J. 2011. Convective heat transfer of non- Newtonian nanofluids through a uniformly heated circular tube, International Journal of Thermal Sciences, 50(40), 525–531.
  • 18. Huminic A., Huminic G., Fleaca C., Dumitrache F., Morjan I. 2015. Thermal conductivity, viscosity and surface tension of nanofluids based on FeC nanoparticles. Powder Technology, 284, 78– 84.
  • 19. Hwang K.S., Jang S.P., Choi S.U.S. 2009. Flow and convective heat transfer characteristics of waterbased Al2O3 nanofluids in fully developed laminar flow regime. International Journal of Heat and Mass Transfer, 52, 193–199.
  • 20. Ibrahim H., Sazali N., Shah A.S.M., Karim M.S.A., Aziz F., Salleh W.N.W. 2019. A review on factors affecting heat transfer efficiency of nano fluids for application in plate heat exchanger. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 60(1), 144–154.
  • 21. Jang S., Choi U. 2004. Role of Brownian Motion in the Enhanced Thermal Conductivity of Nano fluids, Applied Physics Letters, 84, 4316–4318.
  • 22. Jang S.P., Lee J.H., Hwang K.S., Choi S.U.S. 2007. Particle concentration and tube size dependence of viscosities of Al2O3-water nanofluids flowing through micro and mini tubes. Applied Physics Letters 9(1), 243112.
  • 23. K.P.V. Krishna Varma, Kishore P.S., Durga Prasad P.V. 2017. Enhancement of Heat Transfer Using Fe3O4. Water Nanofluid with Varying Cut-Radius Twisted Tape Inserts, 12(18), 7088–7095.
  • 24. Kamel M.S., Al-Oranl O., Lezsovits F. 2021. Thermal Conductivity of Al2O3 and CeO2 Nanoparticles and Their Hybrid Based Water Nanofluids: An Experimental Study, 65(1), 50–60.
  • 25. Khan I., Saeed K., Khan I. 2019. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931.
  • 26. Kothandaraman C.P. 2006. Fundamentals of Heat and Mass Transfer. New Age International.
  • 27. Lee S., Choi S.U., Li S., Eastman J.A. 1999. Measuring thermal conductivity of fluids containing oxide Nanoparticles. Journal of Heat Transfer, 121(2), 280–289.
  • 28. Lee, Ji-Hwan, Hwang K.S., Jang S.P., Lee B.H., Kim J.H., Choi S.U.S., Choi C.J. 2008. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. International Journal of Heat and Mass Transfer, 51(11–12), 2651–2656.
  • 29. Lei, Gang, Li W., Wen Q. 2019. The convective heat transfer of fractal porous media under stress factors affecting the same. International Journal of Engineering Science and Technology, 6(8), 502.
  • 30. Li Q., Xuan Y. 2000. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow, 21, 58–64.
  • 31. Linn C.C., Wu M.S. 2015. Continuous production of CuO nanoparticles in a rotating packed bed, in press. Ceramic International, 42(2), 1–17.
  • 32. Liu K., Choi U., Kasza K.E. 1988. Measurements of Pressure Drop and Heat Transfer in Turbulent Pipe Flows of Particulate Slurries. Argonne National Lab.
  • 33. Maiga S.E.B., Nguyen C.T., Galanis N., Roy G. 2004. Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices and Microstructures, 35, 543–557.
  • 34. Maiga S.E.B., Nguyen C.T., Galanis N., Roy G., Mare T., Coqueux M. 2006. Heat transfer enhancement conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78(6), 718–720.
  • 35. Maxwell J.C. 1891. A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, UK.
  • 36. Mintsa A.M., Roy G., Nguyen C.T., Doucet D. 2009. New temperature dependent thermal conductivity data for water-based nanofluids. International Journal of Thermal Sciences, 48, 363–371.
  • 37. Mo S., Chen Y., Jia L., Luo X. 2012. Investigation on crystallization of TiO2–water nanofluids and deionized water. Applied Energy, 93, 65–70.
  • 38. Mourdikoudis S., Pallares R.M., Nguyen T.K. 2018. Thanh, characterization techniques for nano investigation on the effects of lower concentration CeO2/water nanofluid in flat-plate solar collector, Journal of Thermal Analysis and Calorimetry, 1–16.
  • 39. Murshed S.M.S., Leong K.C., Yang C. 2005. Enhanced thermal conductivity of TiO2 water based nano Fluids. International Journal of Thermal Sciences, 44(4), 367–373.
  • 40. Ordóñez-Miranda J., Alvarado-Gil J.J., Medina-Ezquivel R. 2010. Generalized Bruggeman Formula for the Effective Thermal Conductivity of Particulate Composites with an Interface Layer. 31(4–5), 975–986. DOI: 10.1007/s10765-010-0756-2
  • 41. Pak B.C., Cho Y.I. 1998. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf, 11, 151–170.
  • 42. Sajid, Usman M., Ali H.M. 2019. Recent advances in application of nano fluids in heat transfer devices: a critical review. Renewable and Sustainable Energy Reviews, 103, 556–592.
  • 43. Sonawane, Sandipkumar, Patankar K., Fogla A., Puranik B. 2011. Upendra Bhandarkar, Kumar S.S. An experimental investigation of thermo-physical properties and heat transfer performance of TiO2 nano fluid. Iraqi Journal of chemical and Petroleum Engineering, 17(2), 1–6.
  • 44. Stalin P.M.J., Arjunan T.V., Matheswaran M.M., Sadanandam N. 2017. Experimental and theoretical particles: comparison and complementarity upon studying nano particle properties, Nanoscale, 10, 12871–12934.
  • 45. Syam Sundar L., Ravi Kumar N.T., Naik M.T., Sharma K.V. 2012. Effect of full length twisted tape inserts on heat transfer and friction factor enhancement with Fe3O4 magnetic nano fluid inside a plain tube: An experimental study. International Journal of Heat and Mass Transfer, 55, 2761–2768.
  • 46. Tawfik M. 2017. Experimental studies of nanofluid thermal conductivity enhancement and applications: A review. Renewable and Sustainable Energy Reviews, 75, 1239–1253.
  • 47. Van der Walt H., Chown L. 2015. Polysorbate Stabilised Fe3O4 and Fe3O@Au nanoparticles synthesis and characterization. Materials Today: Proceedings, 2, 4081–4089.
  • 48. Vladára A.E., Hodoroaba V.D. 2020. Characterization of nanoparticles by scanning electron microscopy, Chapter 2.1.1 - Characterization of nanoparticles by scanning electron microscopy, Characterization of nano particles, 7–27.
  • 49. Wahab M.I.A., Thahab S.M., Dhia A.H. 2016. Experimental study of thermo physical properties of Cobalt Accicular Nanoparticles. Advanced Materials Manufacturing & Characterization, 2(1), 105–109.
  • 50. Wang X., Xu X. 1999. Thermal conductivity of nanoparticle-fluid mixture,” Journal of Thermophysics and Heat Transfer, 13(4), 474–480.
  • 51. Wang Y., Xia Y. 2004. Bottom-up and top down approaches to the synthesis of monodispersed spherical colloids of low melting point metals. NanoLetters, 4, 2047–2050.
  • 52. Williams W.C., Buongiorno J., Hu L.W. 2008. Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. Journal of Heat Transfer, 130(4), 42412–42419.
  • 53. Xuan Y., Li Q. 2000. Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21(1), 58–64.
  • 54. Xuan Y., Roetzel W. 2000. Conceptions for heat transfer correlation of nanofluids, 43(19), 3701–3707.
  • 55. Yu W., Xie H. 2012. A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. Journal of Nanomaterials, 2012, 1–17.
  • 56. Zeinali Heris S., Nasr Esfahany M., Etemad S.G. 2007. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube, International Journal of Heat and fluid flow, 28(2), 203–210.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a5103ce-10ca-4f43-b886-a62120111fe1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.