PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A cost-effective resonant switched-capacitor DC-DC boost converter – experimental results and feasibility model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of experimental research of a resonant switched capacitor voltage multiplier in a cost-effective topology (CESCVM) with a limited number of active switches. In the charging mode of the switched capacitors, the converter utilizes only one active switch and a required number of diodes. Therefore, the cost of the converter is decreased as compared with that of a classical SCVM converter, owing to a lower number of switches and gate driver circuits, as well as a smaller PCB area. Moreover, the CESCVM has simpler control circuits and higher reliability. This paper presents the original experimental results of the operation of the CESCVM converter. A concept of the bootstrap supply of gate drivers of the flying switches is also examined.
Wydawca
Rocznik
Strony
75--83
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • AGH University of Science and Technology, Krakow, Poland
autor
  • AGH University of Science and Technology, Krakow, Poland
autor
  • AGH University of Science and Technology, Krakow, Poland
autor
  • AGH University of Science and Technology, Krakow, Poland
autor
  • AGH University of Science and Technology, Krakow, Poland
Bibliografia
  • Alam, M. K. and Khan, F. H. (2014). Efficiency Characterization and Impedance Modeling of a Multilevel Switched Capacitor Converter Using Pulse Dropping Switching Scheme. IEEE Transactions on Power Electronics, 29(6), pp. 3145-3158.
  • Alijani, A., Adabi, J. and Rezanejad, M. (2016). A Bipolar High-Voltage Pulsed-Power Supply Based on Capacitor-Switch Voltage Multiplier. IEEE Transactions on Plasma Science, 44(11), pp. 2880-2885.
  • Ben-Yaakov, S. (2012). On the Influence of Switch Resistances on Switched-Capacitor Converter Losses. IEEE Transactions on Industrial Electronics, 59(1), pp. 638-640.
  • Cao D. and Peng F. Z. (2010). A family of zero current switching switched-capacitor dc-dc converters. In: Proceedings of the 25th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, CA, 21-25 February 2010, IEEE, pp. 1365-1372, doi: 10.1109/APEC.2010.5433407, [INSPEC Accession Number: 11204556].
  • Cervera, A., Evzelman, M., Peretz, M. M. and Ben-Yaakov, S. (2015). A High Efficiency Resonant Switched Capacitor Converter with Continuous Conversion Ratio. IEEE Transactions on Power Electronics, 30(3), pp. 1373-1382.
  • Cheung, C.-K., Tan, S.-C., Tse, C. K. and Ioinovici, A. (2013). On Energy Efficiency of Switched- Capacitor Converters. IEEE Transactions on Power Electronics, 28(2), pp. 862-876.
  • Evzelman, M. and Ben-Yaakov, S. (2013). Average-Current-Based Conduction Losses Model of Switched Capacitor Converters. IEEE Transactions on Power Electronics, 28(7), pp. 3341-3352.
  • Ioinovici, A. (2001). Switched-Capacitor Power Electronics Circuits. IEEE Circuits and Systems Magazine, 1(3), pp. 37-42.
  • Kawa, A. H. and Stala, R. (2016). A Multilevel Switched Capacitor DC-DC Converter. An Analysis of Resonant Operation Conditions. Power Electronics and Drives, 1(2), pp. 35-53.
  • Kawa, A., Stala, R., Mondzik, A., Pirog, S. and Penczek, A. (2016). High Power Thyristor-Based DC-DC Switched-Capacitor Voltage Multipliers: Basic Concept and Novel Derived Topology with a Reduced Number of Switches. IEEE Transactions on Power Electronics, 31(10), pp. 6797-6813.
  • Lei, Y. and Pilawa-Podgurski, R. C. N. (2015). A General Method for Analyzing Resonant and Soft-Charging Operation of Switched-Capacitor Converters. IEEE Transactions on Power Electronics, 30(10), pp. 5650-5664.
  • Mak, O.-C., Wong, Y.-C. and Ioinovici, A. (1995). Step-up DC Power Supply Based on a Switched-Capacitor Circuit. IEEE Transactions on Industrial Electronics, 42(1), pp. 90-97.
  • Mondzik, A., Waradzyn, Z., Stala, R. and Penczek, A. (2016). High efficiency switched capacitor voltage doubler with planar core-based resonant choke. In: CPE-e 2016, 10th International Conference on Compatibility, Power Electronics and Power Engineering, Bydgoszcz, Poland, 29 June – 01 July 2016, IEEE, cop, pp. 402-409.
  • Redondo, L. (2010). A DC Voltage-Multiplier Circuit Working as a High-Voltage Pulse Generator. IEEE Transactions on Plasma Science, 38(10), pp. 2725-2729.
  • Sakamoto, T., Nami, A., Akiyama, M. and Akiyama, H. (2012). A Repetitive Solid State Marx-Type Pulsed Power Generator Using Multistage Switch-Capacitor Cells. IEEE Transactions on Plasma Science, 40(10), pp. 2316-2321.
  • Waradzyn, Z., Stala, R., Mondzik, A., Penczek, A., Skała, A. and Pirog, S. (2017a). Efficiency Analysis of MOSFET-Based Air-Choke Resonant DC-DC Step-Up Switched-Capacitor Voltage Multipliers. IEEE Transactions on Industrial Electronics, 64(11), pp. 8728-8738. doi: 10.1109/TIE.2017.2698368
  • Waradzyn, Z., Stala, R., Mondzik, A. and Pirog, S. (2017b). Switched capacitor-based power electronic converter – optimization of high frequency resonant circuit components. In: J. Kabziński, ed., Advanced Control of Electrical Drives and Power Electronic Converters, ser. Studies in Systems, Decision and Control, Vol. 75, Switzerland: Springer International Publishing AG, pp. 361-378.
  • Ye, Y., Cheng, K. W. E., Liu, J. and Xu, C. (2014). A Family of Dual-Phase-Combined Zero-Current Switching Switched-Capacitor Converters. IEEE Transactions on Power Electronics, 29(9), pp. 4209-4218.
  • Zajac, L., Malinowski, M., Styński, S. and Jasinski, M. (2017). Performance Study of a New High Instantaneous Power Impulse Converter with Switched Capacitor Unit. Power Electronics and Drives, 2(1), pp. 5-17.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a5055c7-9fb8-4eb3-9f0e-125f83f5febc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.