Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Residual anionic polyacrylamide in polymer-flooding oil production wastewater results in the formation of a ther-modynamically stable system. In this study, the effects of three different types of medicaments, namely, cationic, anionic and nonionic agents, in dynamic treatments, such as adding a position, dosage and combined processes of chemical addition, on the oil removal rate of sewage were examined. In the treatment with a single agent, the oil removal rate of the cationic agent CQY-1 and the nonionic agent CHF-2 was ≥ 97.8%. The charge characteristics of different ionic agents for the combined dosing treatment indicated that the oil removal rate was better than that of a single agent; the combined dosing ratio was 50 mg/L CHP-1 and 50 mg/L CHP-2. At 80 mg/L CQY-1, the oil removal rate of the dynamic process was ≥ 98.8%, and the dosage of CQY-1 was reduced from 200 mg/L to 50–150 mg/L, which corresponded to a decrease of 25.0%–75.0%. Therefore, the combined dosing process effectively reduced the single dosage.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
20--26
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wz.
Twórcy
autor
- State Key Laboratory of Petroleum Pollution Control (Yangtze University), School of Chemistry and Environmental Engineering, Yangtze University, Jingzhou Hubei 434023, China
autor
- State Key Laboratory of Petroleum Pollution Control (Yangtze University), School of Chemistry and Environmental Engineering, Yangtze University, Jingzhou Hubei 434023, China
autor
- State Key Laboratory of Offshore Oil Exploitation, Beijing 100027, China
- CNOOC Research Institute, Beijing 100027, China
autor
- State Key Laboratory of Petroleum Pollution Control (Yangtze University), School of Chemistry and Environmental Engineering, Yangtze University, Jingzhou Hubei 434023, China
autor
- State Key Laboratory of Petroleum Pollution Control (Yangtze University), School of Chemistry and Environmental Engineering, Yangtze University, Jingzhou Hubei 434023, China
Bibliografia
- 1. Li, Q., Yin, X.Q., Zhai, L. & Jing, B. (2016). Field test of electrochemical treatment of wastewater containing polymer in offshore oilfield. Tech. Water Treat. 42, 78–81. DOI: 10.16796/j.cnki.1000-3770.2016.05.017.
- 2. Zhu, M.J., Yao, J., Wang, W.B., Yin, X.Q., Chen, W. & Wu, X.Y. (2016). Using response surface methodology to evaluate electrocoagulation in the pretreatment of produced water from polymerflooding well of Dagang Oilfield with bipolar aluminum electrodes. Desal. Water Treat. 57(33), 15314–15325. DOI: 10.1080/19443994.2015.1072058.
- 3. Wang, X.J., Zhai, L., Jing, B. & Zhang, J. (2016). Effects of flocmodifiers on treatment of oil field polymer-containing wastewater using water clarifier. Environ Prot. Chem. Ind., 36, 482–487. DOI: 10.3969/j.issn.1006-1878.2016.05.002.
- 4. Zhai, L., Wang, X.J., Jing, B. & Tan, G.R. (2016). Comparison of different types of water clarifiers on treatment of polymer-containing oilfield wastewater. Environ. Prot. Chem. Ind., 36, 124–130. DOI: 10.3969/j.issn.1006-1878.2016.02.002.
- 5. Liu, D., Chu, Z.K., Wang, H.F. & Qu, C.T. (2017). Electrochemical oxidation treatment of polyacrylamide-based oilfield wastewater. Chin. J. Environ. Eng., 11, 291–296. DOI: 10. 12030/j. cjee.201508174.
- 6. Si, S.X., Yan, Z., Gong, Z.B., Liu, P.F., Zhang, Y.M. & Xiang, Y. (2018). Pilot study of oilfield wastewater treatment by micro-flocculation fi ltration process. Water Sci. Technol., 77(1), 101–107. DOI: 10.2166/wst.2017.513.
- 7. Xiao, L.H., Jin, X.X., Meng, X.H., Zang, Y.H., Zao, P. & Jia, Z.W. (2020). Study on preparation of dynamic membrane form kaolin treated by alkli for treatment of polymer-contained wastewater. Technol. Water Treat. 46, 56–59. DOI: 10.16796/j.cnki.1000-3770.2020.07.011.
- 8. Alias, N.H., Jaafar, J., Samitsu, S., Matsuura, T., Ismail, A.F., Othman, M.H.D., Rahman, M.A., Othman, H.H., Abdullah, N., Paiman, S.H., Yusof, N. & Aziz, F. (2019). Photocatalytic nanofi bercoated alumina hollow fiber membranes for highly efficient oilfield produced water treatment. Chem. Eng. J., 360(15), 1437–1446. DOI: 10.1016/j.cej.2018.10.217.
- 9. Ding, C., Zhang, X., Xiong, S., Shen, Li., Yi, Ming., Li, B.Y. & Wang, Y. (2019). Organophosphonate draw solution for produced water treatment with effectively mitigated membrane fouling via forward osmosis. J. Membr. Sci. 593(1), 117429. DOI: 10.1016/j.memsci.2019.117429.
- 10. Li, L., Shi, W.X., Zang, L.H., Wang, C., Yu, S.L. & Xiang, Y. (2020). Factors affecting the performance of forward osmosis treatment for oilfield produced water from surfactant-polymer flooding. J. Membr. Sci., 615(1), 118457. DOI: 10.1016/j.mem-sci.2020.118457.
- 11. Liu, Y.G., Song, X., Meng, X.H., Yuan, Y.J. & Chen, Z. (2020). Optimization study on enhanced coagulation technology for treating oil-bearing wastewater containing polymer. Fine Spec Chem. 28, 19–22. DOI: 10.19482/j.cn11-3237. 2020. 06.04.
- 12. Zhang, W. & Long, W.H. (2020). Synthesis and evaluation of P[DPM/DC12MAAC] for treating polymerized sewage. Oilfield Chem. 37, 515–521. DOI: 10.19346/j.cnki.1000-4092.2020.03.024.
- 13. Kundu, P., Arora, K., Gu, Y., Kumar, V. & Mishra, I.M. (2019). Formation and stability of water in oil nano emulsions with mixed surfactant using in-situ combined condensation-dispersion method. Can. J. Chem. Eng. 97(7), 2039–2049. DOI: 10.1002/cjce.23481.
- 14. Zkaraova, E.B., Orkun, M.O., Atmaca, E., Güven, D. & Aksoy, A. (2020). Combined effects of surfactant-assisted soil washing and the electrofenton process on fluorene removal. Int. J. Electrochem. Sci.,
- 15, 11791–11813. DOI: 10.20964/2020.12.19.15. Zhu, M., Yao, J., Masakorala, K., Chandankere, R., Chen, H. & Ceccanti, B. (2015). Ultrasound-assisted extraction of pah-contaminated clay soil in the middle yangtze river basin, china: optimisation with response surface methodology. Fresenius Environ. Bull., 24(10B), 3426–3435
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a4ed473-ed51-4de3-8902-5f6b0493a4b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.