PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the influence of fracture criterion on perforation of high-strength steel plates subjected to armour piercing projectile

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ kryterium pękania materiału na perforację płyt ze stali pancernej pociskiem przeciwpancernym
Języki publikacji
EN
Abstrakty
EN
This paper presents a numerical investigation of fracture criterion influence on perforation of high-strength 30PM steel plates subjected to 7.6251 mm Armour Piercing (AP) projectile. An evaluation of four ductile fracture models is performed to identify the most suitable fracture criterion. Included in the paper is the Modified Johnson-Cook (MJC) constitutive model coupled separately with one of these fracture criteria: the MJC fracture model, the Cockcroft-Latham (CL), the maximum shear stress and the constant failure strain models. A 3D explicit Lagrangian algorithm that includes both elements and particles, is used in this study to automatically convert distorted elements into meshless particles during the course of the computation. Numerical simulations are examined by comparing with the experimental results. The MJC fracture model formulated in the space of the stress triaxiality and the equivalent plastic strain to fracture were found capable of predicting the realistic fracture patterns and at the same time the correct projectile residual velocities. However, this study has shown that CL one parameter fracture criterion where only one simple material test is required for calibration is found to give good results as the MJC failure criterion. The maximum shear stress fracture criterion fails to capture the shear plugging failure and material fracture properties cannot be fully characterized with the constant fracture strain.
PL
Artykuł przedstawia numeryczne badania wpływu kryterium pękania materiału na perforację płyt ze stali pancernej 30PM pociskiem przeciwpancernym 7,6251 mm. Dokonano oceny czterech modeli pękania materiałów plastycznych w celu wyboru najbardziej odpowiedniego z nich. W artykule wykorzystano zmodyfikowany model konstytutywny Johnsona-Cooka (MJC) sprzężony z jednym z czterech kryteriów pękania: kryterium MJC, kryterium Cockrofta-Lathama (CL), kryterium maksymalnego naprężenia stycznego i kryterium stałego granicznego odkształcenia. Zastosowano trójwymiarowy algorytm w opisie Lagrange’a, zawierający zarówno skończone elementy jak i cząstki, z automatyczną konwersją zniekształconych elementów w bezsiatkowe cząstki. Wyniki symulacji numerycznej oceniono na postawie porównania z wynikami doświadczeń. Model pękania MJC, sformułowany w przestrzeni trójosiowości naprężenia i równoważnego odkształcenia plastycznego, pozwolił przewidzieć realistycznie obraz pękania materiału i wartości prędkości resztkowych pocisków. Jednakże wyniki badań wykazały, że również jednoparametrowy model CL, dla którego kalibracji wystarczy jeden prosty test materiałowy, daje porównywalne wyniki z kryterium MJC. Stwierdzono, że kryterium maksymalnego naprężenia stycznego niepoprawnie opisuje proces tworzenia się korka. Również kryterium stałej wartości odkształcenia granicznego nie może być użyte do scharakteryzowania procesu niszczenia materiału.
Rocznik
Strony
157--179
Opis fizyczny
Bibliogr. 38 poz., fot., rys., tab.
Twórcy
autor
  • Department of Ballistics, Military University of Technology, ul. Gen. Kaliskiego 2, 00-902 Warsaw, Poland
  • Department of Ballistics, Military University of Technology, ul. Gen. Kaliskiego 2, 00-902 Warsaw, Poland
Bibliografia
  • [1] Zukas J.A., Nicholas T., Swift H.F., Greszczuk L.B., Curan D.R.: Impact dynamics. John-Wiley and Sons, Inc., New York, 1982.
  • [2] Johnson G.R., Cook W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics 1985; 21: 31-48.
  • [3] Johnson G.R., Cook W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of seventh international symposium on ballistics, Netherlands, 1983.
  • [4] Zukas J.A.: High velocity impact dynamics. John-Wiley and Sons, Inc., New York, 1990.
  • [5] Zukas J.A.: Introduction to hydrocodes. Computational Mechanics Associates. Baltimore 2004.
  • [6] Rajendran A.M.: Advanced numerical simulation of failure in solids under blast and ballistic loading: A review. In; Shukla A et al. (Eds.) Dynamic failure of materials and structures, springer, New York, 2010; 336-347.
  • [7] Mehra V., Sijiy C.D., Mishra V., Chaturvedi S.: Tensile instability and artificial stresses in impact problems in SPH. J Physics 2012; 377: 102-112.
  • [8] Dey S., Borvik T., Hopperstad O.S., Langseth M.: On the influence of the fracture criterion in projectile impact of steel plates. Computational materials Science 2006; 38: 176-191.
  • [9] Borvik T., Dey S., Clause A.H.: Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles. Int J Impact Engineering 2009; 36: 948-964.
  • [10] Borvik T., Olovsson L., Dey S., Langseth M.: Normal and Oblique impact of small arms bullets on AA6082-T4 aluminum protective plates. Int J Impact Eng 2011; 38: 577-589.
  • [11] Kılıç N., Ekici B.: Ballistic resistance of high hardness armor steels against 7.62 mm armor piercing projectile. Materials and Design 2013; 44: 35-48.
  • [12] Andersen Jr. C.E., Burkins M.S., Walker J.D., Gooch W.A.: Time-resolved penetration of B4C tiles by the APM2 bullet. Computer Modeling in Engineering & Sciences 2005; 8(2): 91-104.
  • [13] Monaghan J.J.: SPH without a tensile instability. J Computational Physics 2000; 159: 290-311.
  • [14] Abaqus theory manual, 2014.
  • [15] Ls-Dyna theory manual. Livermore Software Technology Corporation (LSTC); 2014.
  • [16] Beal T., Van Dorsselaer N., Lapoujade V.: A contribution to validation of SPH new features. 9th European Ls-Dyna Conference 213, France.
  • [17] Woodward R.L.: Material failure at high strain rates. In; Zukas JA (Ed) High velocity impact dynamics. John-Wiley and Sons, Inc., New York, 1990; 65-126.
  • [18] Anderson T.L.: Fracture Mechanics (Fundamentals and Applications). CRC Press, Inc. 1991.
  • [19] Anvari M., Liu J., Thaulow C.: Dynamic ductile fracture in aluminum round bars: experiments and simulations. Int J Fracture 2007; 143: 317-332.
  • [20] Hancock J.W., Meckenzie A.C.: On the mechanisms of ductile failure in high strength steels subjected to multi-axial stress-states, Journal of the Mechanics and Physics of Solids, Vol. 24, pp. 147-169, 1976.
  • [21] Cockcroft M.G., Latham D.J.: Ductility and workability of metals. Journal of the Institute of Metals 1968; 96: 33-39.
  • [22] Wierzbicki T., Bao Y., Lee Y.W., Bai Y.: Calibration and evaluation of seven fracture models. Int J Mechanical Sciences 2005; 47: 719-743.
  • [23] Woodward R.L.: A structural model for thin plate perforation by normal impact of blunt projectiles. Int J Impact Eng 1987; 6: 128-140.
  • [24] Borvik T., Hopperstad O.S., Berstad T., Langseth M.: A computational model of viscoplasticity and ductile damage for impact and penetration. European Journal of Mechanics 2001; 20: 685-712.
  • [25] Bao Y., Wierzbicki T.: A comparative study on various ductile crack formation criteria. J Eng Materials and Technology 2004; 126: 314-324.
  • [26] Skoglund P., Nilsson M., Tjernberg A.: Fracture modeling of a high performance armour steel. J Phys IV France 2006; 134: 197-202.
  • [27] Rosenberg Z., Dekel E.: Terminal ballistics. Springer, New York, 2012.
  • [28] Woodward R.L.: Material failure at high strain rates. In; Zukas JA (Ed) High velocity impact dynamics. John-Wiley and Sons, Inc., New York, 1990; 65-126.
  • [29] Buchar J., Voldrich J., Rolc S., Lisy J.: Ballistic performance of dual hardness armor. In: 20th International symposium on Ballistics Orlando, September 2002; 23-27.
  • [30] Rosenberg Z., Dekel E.: How large should semi-infinite targets be? Proceedings of the 45th meeting of the aeroballistics range association, Huntsville, Alabama, 10-14 Oct 1994.
  • [31] Littlefield D.L., Anderson C.E., Partom Y., Bless S.J.: The penetration of steel targets finite in radial extent. Int J Impact Eng 1997; 19: 49-62.
  • [32] Anderson C.E., Morris B.L., Littlefield D.L.: Penetration mechanics database. SwRI Report 3593/001. Southwest Research Institute,1992, TX.
  • [33] Meyers M.A.: Dynamic behavior of materials. New York, John Wiley and Sons, 1994.
  • [34] Huber M.T.: Contribution to the foundation of the strength of the material (in Polish, translated to English by Professor. M. Zyczkowski in connection with the M.T. Huber Century Symposium, Krakow, August, 2004). Czasopismo Techniczne, Lwow 1904; 22: 81.
  • [35] Bardet J.P.: Lode dependences for isotropic pressure-sensitive elastoplastic materials. Transactions of the ASME 1990; 57: 498-506.
  • [36] Bigoni D., Piccolroza A.: A new yield function for geomaterials. In: Viggiani C, editor. Constitutive modelling and analysis of boundary value problems in geotechnical engineering, Napoli; 22-24 April 2003; 266-81.
  • [37] Bridgman P.W.: Studies in Large Plastic Flow and Fracture. McGraw-Hill, New York. 1952.
  • [38] Le Roy G., Embudy J.D., Ashly M.F.: A model of ductile fracture based on the nucleation and growth of voids. Acta Mettalurgica 1981; 29: 1509-22.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a4ed3e1-15e3-498f-ae4d-8b32911806b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.