PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of qNANO results from the isolation of extracellular microvesicles with the theoretical model

Identyfikatory
Warianty tytułu
Konferencja
4th Jagiellonian Symposium on Advances in Particle Physics and Medicine, Krakow, 10-15 July 2022
Języki publikacji
EN
Abstrakty
EN
Objectives: Extracellular vesicles (EVs) are heterogeneous membrane vesicles in diameter of 30-5000 nm, that transport proteins, non-coding RNAs (miRNAs), lipids and metabolites. Major populations include exosomes, ectosomes and apoptotic bodies. The purpose of this study was to compare the distribution of EVs obtained under different conditions of differential centrifugation, including ultracentrifugation, with the results developed based on a theoretical model. Methods: Immortalized endothelial cell line that expresses h-TERT (human telomerase) was used to release of EVs: microvascular TIME. EVs were isolated from the culture medium at different centrifugation parameters. The size distribution of the EVs was measured using TRPS technology on a qNano instrument. Surface markers were evaluated using flow cytometry. The isolated EV subpopulations were compared with the theoretical model developed by Livshits. Results: EVs isolated from endothelial cells show strong aggregating properties, which was confirmed by TEM, TRPS imaging and flow cytometry. Conclusions: Obtaining pure EV subpopulations is difficult because of the small differences in the diameter of ectosomes and exosomes, and the strong aggregating properties of EVs.
Rocznik
Strony
171--179
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Marian Smoluchowski Institute of Physics, Department of Medical Physics, Jagiellonian University, Krakow, Poland
  • Marian Smoluchowski Institute of Physics Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Kraków, Poland
  • Marian Smoluchowski Institute of Physics, Department of Medical Physics, Jagiellonian University, Krakow, Poland
  • Marian Smoluchowski Institute of Physics Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Kraków, Poland
autor
  • Department of Chemistry, Loughborough University, Loughborough, United Kingdom
  • Marian Smoluchowski Institute of Physics, Department of Medical Physics, Jagiellonian University, Krakow, Poland
  • Marian Smoluchowski Institute of Physics Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
Bibliografia
  • [1] Stępień E.Ł, Rząca C, Moskal P, Radiovesicolomicsnew approach in medical imaging. Front Physiol 2022;13:996985. doi: 10.3389/fphys.2022.996985.
  • [2] Marzec ME, Rząca C, Moskal P, Stępień EŁ, Study of the influence of hyperglycemia on the abundance of amino acids, fatty acids, and selected lipids in extracellular vesicles using TOF-SIMS. Biochem Biophys Res Commun 2022;622:30-36. doi: 10.1016/j.bbrc.2022.07.020.
  • [3] Tokarz A, Konkolewska M, Kuśnierz-Cabala B, Maziarz B, Hanarz P, Żurakowski A, Szuścik I, Stępień EŁ, Retinopathy severity correlates with RANTES concentrations and CCR 5-positive microvesicles in diabetes. Folia Med Cracov 2019;59(3):95-112. doi: 10.24425/fmc.2019.131139.
  • [4] Stępień EŁ, Kamińska A, Surman M, Karbowska D, Wróbel A, Przybyło M. Fourier- Transform InfraRed (FTIR) spectroscopy to show alterations in molecular composition of EV subpopulations from melanoma cell lines in different malignancy. Biochem Biophys Rep 2021;25:100888. doi:10.1016/j.bbrep.2020.100888.
  • [5] Kim DK, Lee J, Kim SR, Choi DS, Yoon YJ, Kim JH, Go G, et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics 2015;31(6):933-9. doi: 10.1093/bioinformatics/btu741.
  • [6] Stępień EŁ, Durak-Kozica M, Kamińska A, TargoszKorecka M, Libera M, Tylko G, Opalińska A, Kapusta M, Solnica B, Georgescu A, Costa MC, Czyżewska-Buczyńska A, Witkiewicz W, Małecki MT, Enguita FJ. Circulating ectosomes: Determination of angiogenic microRNAs in type 2 diabetes. Theranostics 2018;8(14):3874-3890. doi: 10.7150/thno.23334.
  • [7] Kamińska A, Roman M, Wróbel A, Gala-Błądzińska A, Małecki MT, Paluszkiewicz C, Stępień EŁ. Raman spectroscopy of urinary extracellular vesicles to stratify patients with chronic kidney disease in type 2 diabetes. Nanomedicine: NBM 2022;39:102468. doi: 10.1016/j.nano.2021.102468.
  • [8] Drożdż A, Kołodziej T, Wróbel S, Misztal K, TargoszKorecka M, Drab M, Jach R, Rząca C, Surman M, Przybyło M, Rajfur Z, Stępień EŁ. Large extracellular vesicles do not mitigate the harmful effect of hyperglycemia on endothelial cell mobility. Eur J Cell Biol 2022;101(4):151266. doi: 10.1016/j.ejcb.2022.151266.
  • [9] Lima TSM, Souza W, Geaquinto LRO, Sanches PL, Stępień EL, Meneses J, et al.. Nanomaterial exposure, extracellular vesicle biogenesis and adverse cellular outcomes: A Scoping Review. Nanomaterials (Basel) 2022;12(7):1231. doi: 10.3390/nano12071231.
  • [10] Gąsecka A, van der Pol E, Nieuwland R, Stępień E. Extracellular vesicles in post-infarct ventricular remodelling. Kardiol Pol 2018;76(1):69-76. doi: 10.5603/KP.a2017.0178.
  • [11] Roman M, Kamińska A, Drożdż A, Platt M, Kuźniewski M, Małecki MT, Kwiatek WM, Paluszkiewicz C, Stępień EŁ. Raman spectral signatures of urinary extracellular vesicles from diabetic patients and hyperglycemic endothelial cells as potential biomarkers in diabetes. Nanomedicine: NBM 2019;17:137-149. doi: 10.1016/j.nano.2019.01.011.
  • [12] Ewa Ł. Stępień , Carina Rząca , Paweł Moskal. Novel biomarker and drug delivery systems for theranostics: extracellular vesicles 10.1515/bams-2021-0183.
  • [13] Liangsupree T, Multia E, Riekkola ML. Modern isolation and separation techniques for extracellular vesicles. J Chromatogr A. 2021;1636:461773. doi:10.1016/j.chroma.2020.461773.
  • [14] Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 2006; Chapter 3. doi:10.1002/0471143030.cb0322s30.
  • [15] Livshits MA, Khomyakova E, Evtushenko EG, Lazarev VN, Kulemin NA, Semina SE, et al Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol. Sci Rep 2015;5:17319.
  • [16] Durak-Kozica M, Baster Z, Kubat K, Stępień E. 3D visualization of extracellular vesicle uptake by endothelial cells. Cell Mol Biol Lett. 2018;23:57doi:10.1186/s11658-018-0123-z.
  • [17] Zhang, Y., Y. Liu, H. Liu, W. H. Tang,. Exosomes: biogenesis, biologic function, and clinical potential. Cell & bioscience 2019; 9:19.
  • [18] Stępień E, Durak-Kozica M, Wróbel A, Platt M. (2022). Tunable Resistive Pulse Sensing results from the isolation of extracellular microvesicles in comparison with the theoretical model. Repozytorium Uniwersytetu Jagiellońskiego. https://doi.org/10.26106/vngy-9551.
  • [19] IZON SCIENCE LIMITED. Tunable Resistive Pulse Sensing: Essential information about nanoparticles is revealed quickly and accurately. www.izon.com.
  • [20] Witwer KW, Buzas EI, Bemis LT, Bora ., Lasser C, Lotvall J, Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2013; 2:1-25.
  • [21] Jeppesen DK, Hvam ML, Primdahl-Bengtson B, Boysen AT, Whitehead B, Dyrskjøt L. et al. Comparative analysis of discrete exosome fractions obtained by differentia centrifugation. J Extracell Vesicles 2014: 3:25011.
  • [22] Greenberg JW, Kim H, Moustafa AA, Datta A, Barata PC, Boulares AH et al. Repurposing ketoconazole as an exosome directed adjunct to sunitinib in treating renal cell carcinoma. Sci Rep 2021;11(1):1-2.
  • [23] Maas S.L., De Vrij J., Broekman M.L., Quantification and Size-profiling of Extracellular Vesicles Using Tunable Resistive Pulse Sensing. J Vis Exp, 2014; 92:51623.
  • [24] van der Pol E, Coumans F, Varga Z, Krumrey M, Nieuwland R, Innovation in the detection of microparticles and exosomes. J Thromb Haem 2013; 1:36-45.
  • [25] Soares Martins T, Catita J, Martins Rosa I, AB da Cruz E, Silva ., Henriques AG, Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLOS ONE 2018;13: 0198820.
  • [26] Midekessa G, Godakumara K, Ord J, Viil J, Lättekivi F, Dissanayake K et al. Zeta potential of extracellular vesicles: toward understanding the attributes that determine colloidal stability. Acs Omega. 2020 Jun 30;5(27):16701-10.
  • [27] Nguyena D.B., Ly T.B., Wesseling M.C., Hittinger M., Torge A., Devitt A., Perrie Y., Bernhardt I., Characterization of microvesicles released from human red blood cells, Cell Phys Biochem 2016;38:1085-1099.
  • [28] Zhmurov A, Brown AEX, Litvinov RI, Dima RI, Weisel JW, Barsegov V, Mechanism of fibrin(ogen) forced unfolding. Structure 2011;19:1615-1624.
  • [29] Gao J, Wang S, Wang Z, Yield H. Scalable and remotely drug-loaded neutrophilderived extracellular vesicles (EVs) for anti-inflammation therapy, Biomaterials. 2017;135:62-73.
  • [30] Durrieu ., Bharadwaj A, Waisman DM, Analysis of the thrombotic and fibrinolytic activities of tumor cell– derived extracellular vesicles. Blood Adv 2018; 2:1054-1065 139.
  • [31] Patel GK. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Scie Rep 2019;9:5335.
Uwagi
Opublikowane przez Sciendo. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a4ecbf9-c803-4973-878b-6e8707c969df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.