PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Neural controller for the selection of recycled components in polymer-gypsy mortars

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents research on the development of an intelligent controller that allows optimal selection of rubber granules, as an admixture recycling component for polymer-gypsy mortars. Based on the results of actual measurements, neural networks capable of predicting the setting time of gypsum mortar, as well as determining the bending and compressive strength coefficients were trained. A number of simulation experiments were carried out, thanks to which the characteristics of setting times and strength of mortars containing different compositions of recycling additives were determined. Thanks to the obtained results, it was possible to select the rubber admixtures optimally both in terms of the percentage share as well as in relation to the diameter of the granules.
Rocznik
Strony
48--59
Opis fizyczny
Bibliogr. 27 poz., fig., tab.
Twórcy
  • Lublin University of Technology, Lublin, Poland
  • Lublin University of Technology, Department of Technology and Polymer Processing, Lublin, Poland
  • Lublin University of Technology, Department of Technology and Polymer Processing, Lublin, Poland
Bibliografia
  • [1] Aslani, F., Ma, G., Wan, D. L. Y., & Muselin, G. (2018). Development of high-performance self-compacting concrete using waste recycled concrete aggregates and rubber granules. Journal of Cleaner Production, 182, 553-566. doi:doi.org/10.1016/j.jclepro.2018.02.074
  • [2] Baricevic, A., Jelcic Rukavina, M., & Pezer, M. (2018). Influence of recycled tire polymer fibers on concrete properties. Cement and Concrete Composites, 91, 29–41.
  • [3] Benosman, A. S., Taïbi, H., Senhadji, Y., Mouli, M., Belbachir, M., & Bahlouli, M. I. (2017). Plastic Waste Particles in Mortar Composites: Sulfate Resistance and Thermal Coefficients. Progress in Rubber, Plastics and Recycling Technology, 33(3), 171.
  • [4] Bergström, L., Sturm (née Rosseeva), E. V., Salazar-Alvarez, G., & Cölfen, H. (2015). Mesocrystals in biominerals and colloidal arrays. Acc. Chem. Res., 48, 1391–1402. doi:10.1021/ar500440b
  • [5] Chłądzyński, S. (2008). Spoiwa gipsowe w budownictwie. Warsawa: Dom wydawniczy Medium.
  • [6] Aciu, C. (2013). Possibilities of Recycling Rubber Waste in the Composition of Mortars. ProEnvironment Promediu, 6(15).
  • [7] Di Mundo, R., Petrella, A., & Notarnicola, M. (2018). Surface and bulk hydrophobic cement composites by tyre rubber addition. Construction and Building Materials, 172, 176–184. doi:10.1016/j.conbuildmat.2018.03.233
  • [8] Forrest, M. (2014). Recycling and re-use of waste rubber. Shropshire: Smithers Rapra.
  • [9] Gorninski, J. P., Dal Molin, D. C., & Kazmierczak, C. S. (2007). Strength degradation of polymer concrete in acidic environments. Cem. Concr. Compos., 29(8), 637–645. doi:10.1016/j.cemconcomp. 2007.04.001
  • [10] Herrero, S., Mayor, P., & Hernandez-Olivarez, F. (2013). Influence of proportion and particle size gradation of rubber from end-of-life tires on mechanical, thermal and acoustic properties of plaster-rubber mortars. Materials & Design, 47, 633–642. doi:10.1016/j.matdes.2012. 12.063
  • [11] Hooton, R. D. (2015). Current developments and future needs in standards for cementitious materials. Cement and Concrete Research, 78, 165–177. doi:10.1016/j.cemconres.2015. 05.022
  • [12] Jafari, K., Tabatabaeian, M., Joshaghani, A., & Ozbakkaloglu, T. (2018). Optimizing the mixture design of polymer concrete: An experimental investigation. Construction and Building Materials, 167, 185–196. doi:10.1016/j.conbuildmat.2018.01.191
  • [13] Jarosiński, A., Żelazny, S., & Nowak, A. (2007). Warunki otrzymywania spoiwa gipsowego z produktu odpadowego pochodzącego z procesu pozyskiwania koncentratu cynku. Kraków: Czasopismo techniczne 1/Ch-2007 Wydawnictwo Politechniki Krakowskiej.
  • [14] Konar, B., Das, A., Gupta, P. K., & Saha, M. (2011). Physicochemical characteristics of styrene-butadiene latex- modified mortar composite vis-à-vis preferential interactions. J. Macromol. Sci., 48 (9), 757–765. doi:10.1080/10601325.2011.596072
  • [15] Kou, S.-C., & Poon, C.-S. (2013). A novel polymer concrete made with recycled glass aggregates, fly ash and metakaolin. Constr Build Mater., 41, 146–151. doi:10.1016/j.conbuildmat. 2012.11.083
  • [16] Lorrentz, P. (2015). Artificial Neural Systems: Principle and Practice. Bentham Science Publishers. doi: 10.2174/97816810809011150101
  • [17] Al Menhosh, A., Wang, Y., Wang, Y., & Augusthus-Nelson, L. (2018). Long term durability properties of concrete modified with metakaolin and polymer admixture. Construction and Building Materials, 172, 41–51. doi:10.1016/j.conbuildmat.2018.03.215
  • [18] Osiecka, E. (2005). Materiały budowlane – tworzywa sztuczne. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
  • [19] Pedro, D., De Brito, J., & Veiga, R. (2012). Mortars made with fine granulate from shredded tires. Journal of Materials in Civil Engineering, 25(4), 519–529. doi:10.1061/(ASCE)MT. 1943-5533.0000606
  • [20] Picker, A., Nicoleau, L., Burghard, Z., Bill, J., Zlotnikov, I., Labbez, C., Nonat, A., & Cölfen, H. (2017). Mesocrystalline calcium silicate hydrate: A bioinspired route toward elastic concrete materials. Science Advances, 11(3), 37–49. doi:10.1126/sciadv.1701216
  • [21] Sahmaran, M., & Li, V. C. (2009). Durability properties of micro-cracked ECC containing high volumes fly ash. Cem. Concr. Res., 39, 1033–1043. doi:10.1016/j.cemconres.2009.07.009
  • [22] Seto, J., Ma, Y., Davis, S. A., Meldrum, F., Gourrier, A., Kim, Y.-Y., Cölfen, H. (2012). Structure-property relationships of a biological mesocrystal in the adult sea urchin spine. Proceedings of the National Academy of Sciences, 109(10), 3699.
  • [23] Serdar, M., Baricevic, A., Jelcic Rukavina, M., Pezer, M., & Bjegovic, D. (2015). Shrinkage behaviour of fibre reinforced concrete with recycled tyre polymer fibres. Int. J. Polym. Sci., 145918. doi:10.1155/2015/145918
  • [24] Serna, Á., del Rio, M., Palomo, J. G., & González, M. (2012). Improvement of gypsum plaster strain capacity by the addition of rubber particles from recycled tyres. Construction and Building Materials, 35, 633–641. doi:10.1016/j.conbuildmat.2012.04.093
  • [25] Sosoi, G., Barbuta, M., Serbanoiu, A. A., Babor, D., & Burlacu, A. (2018). Wastes as aggregate substitution in polymer concrete. Procedia Manufacturing, 22, 347–351. doi: 10.1016/j.promfg.2018.03.052
  • [26] Tanyildizi, H., & Asilturk, E. (2018). High temperature resistance of polymer-phosphazene concrete for 365 days. Construction and Building Materials, 174, 741–748. doi:10.1016/j.conbuildmat. 2018.04.078
  • [27] Thomas, P., & Thomas, A. (2011). Multilayer perceptron for simulation models reduction: Application to a sawmill workshop. Engineering Applications of Artificial Intelligence, 24(4), 646-657. doi:10.1016/j.engappai.2011.01.004
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a4c73c0-5cc0-4ecb-ac04-2d73f830aa68
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.