PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical studies of variable geometry : hot section of the miniature jet engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this article is to present the results of theoretical studies regarding the use of variable geometry hot section of a miniature gas turbine. The variable geometry combustor and variable area nozzle concepts for GTM-120 miniature jet engine are presented in particular. Recent trends of propulsion system size reduction, low-emission combustion and improved fuel efficiency have been considered. A system of variable geometry combustor and variable area nozzle has been proposed as solution. The basic zero-dimensional analytical models for variable geometry combustor and variable area nozzle are developed. Chemkin based model shows significant NOX/CO emissions reduction and combustor outlet enthalpy increases with the use of variable geometry combustor chamber. The analytical model of the variable area nozzle has been proposed. It shows turbine effectiveness increase across its operating range by raising the compressor working line. As a result, noticeable turbine stage efficiency increase has been obtained. Finally, physical implications and future work plans regarding variable geometry hot section of miniature gas turbines are discussed.
Twórcy
  • Warsaw University of Technology Institute of Heat Engineering Nowowiejska Street 21/25, 00-665 Warsaw, Poland tel.:+48 22 2345222
autor
  • Warsaw University of Technology Institute of Heat Engineering Nowowiejska Street 21/25, 00-665 Warsaw, Poland tel.:+48 22 2345222
autor
  • Warsaw University of Technology Institute of Heat Engineering Nowowiejska Street 21/25, 00-665 Warsaw, Poland tel.:+48 22 2345222
Bibliografia
  • [1] Lefebvre, A. H., Ballal, D. R., Gas Turbine Combustion: Alternative Fuels and Emissions, CRC Press, Boca Raton, 2010.
  • [2] Welsh, P., Fletcher, P., Gas Turbine Performance, Blackwell Science Ltd, Oxford 2004.
  • [3] Kaddah, K. S., Discharge Coefficients and Jet Deflection Angles for Combustor Liner Air Entry Holes, College of Aeronautics MSc thesis, Cranfield, UK 1964.
  • [4] Freeman, Β. C., Discharge Coefficients of Combustion Chamber Dilution Holes, College of Aeronautics MSc thesis, Cranfield, UK 1965.
  • [5] Gieras, M., Stańkowski, T., Computational study of an aerodynamic flow through a micro-turbine engine combustor, Journal of Power Technologies 92 (2) pp. 68-79, Warsaw 2012.
  • [6] Ślesik, D., Numeryczna symulacja aerodynamiki przepływu przez komorę spalania silnika GTM-120, Praca dyplomowa inżynierska, Warsaw 2011.
  • [7] Chmielewski, M., Gieras, M., Small Gas Turbine GTM-120 Bench Testing with Emission Measurements, Journal of KONES, Vol. 22(1), 2015.
  • [8] Strelkova, M. I., Kirillov, I. A., Potapkin, B. V., Safonov, A. A., Sukhanov, L. P., Umanskiy S. Ya. , Deminsky M. A., Dean A. J., Varatharajan B., Tentner A. M., Detailed and Reduced Mechanisms of Jet-A Combustion at High Temperatures, Combustion Science and Technology, Vol. 180: pp 1788-1802, 2008.
  • [9] Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C., Jr., Lissianski, V. V., Qin, Z., http://www.me.berkeley.edu/gri_mech/
  • [10] Mattingly, J. D., W. H. Heiser, D. T. Pratt, Aircraft engine design, AIAA, Reston 2002.
  • [11] Mattingly, J. D., Elements of propulsion: Gas turbines and rockets, AIAA, Reston 2006.
  • [12] Szczeciński, S., Turbinowe napędy samochodowe, Wyd. Komunikacji i Łączności, Warsaw 1974.
  • [13] Tuliszka, E., Turbiny cieplne, Wyd. Naukowo-techniczne, Warsaw 1973.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a4c2ab8-9e5f-4fb4-8621-426e12644356
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.