PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The biomechanical characteristics of spinal dura mater in the context of its basic morphology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Spinal dura mater plays a crucial role in the biomechanics and protection of the spine. Therefore, the present study investigated the dura mater's mechanical and basic morphological properties to learn more about the biomechanical behaviour of this fibrous membrane. Methods: Tissue strips, oriented in the longitudinal and circumferential directions, were cut from the cervical, thoracic, and lumbar vertebrae parts of the porcine spinal cord. Uniaxial tensile tests were performed using a device with a speed of 4 mm/min until rupture of the sample. Results: It was demonstrated that the dura mater is a heterogeneous, anisotropic material. The longitudinal excised specimens showed the highest values of mechanical properties (ultimate force (FU), the stiffness coefficient (k), ultimate tensile strength (σUTS), and Young’s modulus (E)) compared to those of the circumferentially. Confocal microscopy and sulforhodamine B (SRB) assay enabled us to visualise collagen and elastin elements more efficiently without a need for sample fixation. Conclusions: The spinal dura mater mechanical properties are not uniform along the entire length of the spinal cord, but, in the case of morphological features, no major differences were noticed. The utilisation of SRB occurred to be a non-destructive, fast, and efficient tool for visualising even the smallest elastic fibres on different depths of examined samples. The mechanical and morphological properties of the dura mater provided by this study can be further used in computational modelling to understand injury mechanisms better and help develop injury prevention strategies.
Rocznik
Strony
149--159
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
  • Veterinary Clinic “Brynów”, Katowice, Poland
  • Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland
autor
  • Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland
  • Department of Electrical Power Engineering Faculty of Electrical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
  • Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
Bibliografia
  • [1] AZIZ H.N., GALBUSERA F., BELLINI C.M., MINEO G.V., ADDIS A., PIETRABISSA R., BRAYDA-BRUNO M., Porcine models in spinal research: calibration and comparative finite element analysis of various configurations during flexion-extension, Comp. Med., 2008, 58 (2), 174–179.
  • [2] BIELA E., GALAS J., LEE B., JOHNSON G.L., DARZYNKIEWICZ Z., DOBRUCKI J.W., Col-F, a fluorescent probe for ex vivo confocal imaging of collagen and elastin in animal tissues, Cytometry A, 2013, 83 (6), DOI: 10.1002/cyto.a.22264.
  • [3] BORDONI B., WALKOWSKI S., MORABITO B., VARACALLO M.A., Fascial Nomenclature: An Update, Cureus., 2019, 11 (9), DOI: 10.7759/cureus.5718.
  • [4] CAVELIER S., QUARRINGTON R.D., JONES C.F., Mechanical properties of porcine spinal dura mater and pericranium, Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, DOI: https://doi.org/10.1016/j.jmbbm.2021.105056.
  • [5] CHAUVET D., CARPENTIER A., ALLAIN J.M., POLIVKA M., CRÉPIN J., GEORGE B., Histological and biomechanical study of dura mater applied to the technique of dura splitting decompression in Chiari type I malformation, Neurosurg. Rev., 2010, 33 (3), DOI: 10.1007/s10143-010-0261-x.
  • [6] CITERONI M.R., CIARDULLI M.C., RUSSO V., DELLA PORTA G., MAURO A., EL KHATIB M., DI MATTIA M., GALASSO D., BARBERA C., FORSYTH N.R., MAFFULLI N., BARBONI B., In Vitro Innovation of Tendon Tissue Engineering Strategies, Int. J. Mol. Sci., 2020, 21 (18), DOI: 10.3390/ijms21186726.
  • [7] ENIX D.E., SCALI F., BATTAGLIA P., FACEMYER E., KELLY R., Elastin fiber content in the dura mater of the cervical spine, The 13th Biennial Congress of the World Federation of Chiropractic (WFC), 2015.
  • [8] FINK B.R., WALKER S., Orientation of fibers in human dorsal lumbar dura mater in relation to lumbar puncture, Anesth. Analg., 1989. 69 (6), 768–772.
  • [9] HALL R., OAKLAND R., WILCOX R., BARTON D., Spinal cord-fragment interactions following burst fracture: an in vitro model, J. Neurosurg. Spine, 2006, 5 (3), DOI: 10.3171/ spi.2006.5.3.243.
  • [10] HONG J.Y., SUH S.W., PARK S.Y., MODI H.N., RHYU I.J., KWON S., YU H., BYUN J., Analysis of dural sac thickness in human spine-cadaver study with confocal infrared laser microscope, Spine J., 2011, 11 (12), DOI: 10.1016/ j.spinee.2011.11.001.
  • [11] KINACI A., BERGMANN W., BLEYS R.L., VAN DER ZWAN A., VAN DOORMAAL T.P., Histologic comparison of the dura mater among species, Comp. Med., 2020, 70 (2), DOI: 10.30802/ AALAS-CM-19-000022.
  • [12] KOBIELARZ M., Effect of collagen fibres and elastic lamellae content on the mechanical behaviour of abdominal aortic aneurysms, Acta of Bioengineering and Biomechanics, 2020, 22 (3), DOI: 10.37190/ABB-01580-2020-02.
  • [13] KOZUŃ M., CHWIŁKOWSKA A., PEZOWICZ C., KOBIELARZ M., Influence of atherosclerosis on anisotropy and incompressibility of the human thoracic aortic wall, Biocybernetics and Biomedical Engineering, 2021, 41 (1), DOI:10.1016/ j.bbe.2020.11.004.
  • [14] LUNDIN O., EKSTRÖM L., HELLSTRÖM M., HOLM S., SWÄRD L., Exposure of the porcine spine to mechanical compression: differences in injury pattern between adolescents and adults, Eur. Spine J., 2000, 9 (6), DOI: 10.1007/s005860000164
  • [15] MAIKOS J.T., ELIAS R.A., SHREIBER D.I., Mechanical properties of dura mater from the rat brain and spinal cord, J. Neurotrauma, 2008, 25 (1), DOI: 10.1089/neu.2007.0348.
  • [16] MAZGAJCZYK E., ŚCIGAŁA K., CZYŻ M., JARMUNDOWICZ W., BĘDZIŃSKI R., Mechanical properties of cervical dura mater, Acta Bioeng. Biomech., 2012, 14 (1), 51–58.
  • [17] MAZUCHOWSKI E., THIBAULT L.E., Biomechanical properties of the human spinal cord and pia mater, Summer Bioengineering Conference, Key Biscayne, Florida 2003: 1205–1206.
  • [18] NAGEL S.J., REDDY C.G., FRIZON L.A., CHARDON M.K., HOLLAND M., MACHADO A.G., GILLIES G.T., HOWARD M.A., 3rd, WILSON S., Spinal dura mater: biophysical characteristics relevant to medical device development, J. Med. Eng. Technol., 2018, 42, DOI: 10.1080/03091902.2018.1435745.
  • [19] National Spinal Cord Injury Statistical Center, Facts and Figures at a Glance. Birmingham, AL: University of Alabama at Birmingham, 2021, https://www.nscisc.uab.edu/Public/Facts%20and% 20Figures%20-%202021.pdf. Accessed 10 November 2021.
  • [20] OAKLAND R.J., HALL R.M., WILCOX R.K., BARTON D.C., The biomechanical response of spinal cord tissue to uniaxial loading, Proc. Inst. Mech. Eng. H., 2006, 220 (4), DOI: 10.1243/ 09544119JEIM135.
  • [21] PATIN D.J., ECKSTEIN E.C., HARUM K., PALLARES V.S., Anatomic and biomechanical properties of human lumbar dura mater, Anesth. Analg., 1993, 76 (3), DOI: 10.1213/00000539199303000-00014.
  • [22] POLAK-KRAŚNA K., ROBAK-NAWROCKA S., SZOTEK S., CZYŻ M., GHEEK D., PEZOWICZ C., The denticulate ligament – Tensile characterisation and finite element micro-scale model of the structure stabilising spinal cord, J. Mech. Behav. Biomed. Mater., 2019, 91, DOI: 10.1016/j.jmbbm.2018.11.017.
  • [23] PROTASONI M., SANGIORGI S., CIVIDINI A., CULUVARIS G.T., TOMEI G., DELL’ORBO C., RASPANTI M., BALBI S, REGUZZONI M., The collagenic architecture of human dura mater, J. Neurosurg., 2011, 114 (6), DOI: 10.3171/2010.12.JNS101732.
  • [24] REINA M.A., DITTMANN M., LÓPEZ GARCIA A., VAN ZUNDERT A., New perspectives in the microscopic structure of human dura mater in the dorsolumbar region, Reg. Anesth.,1997, 22 (2), DOI: 10.1016/s1098-7339(06)80036-2.
  • [25] RUNZA M., PIETRABISSA R., MANTERO S., ALBANI A., QUAGLINI V., CONTRO R., Lumbar dura mater biomechanics: experimental characterization and scanning electron microscopy observations, Anesth. Analg., 1999, 88 (6), DOI: 10.1097/ 00000539-199906000-00022.
  • [26] SHETYE S.S., DEAULT M.M., PUTTLITZ C.M., Biaxial response of ovine spinal cord dura mater, J. Mech. Behav. Biomed. Mater., 2014, 34, DOI: 10.1016/j.jmbbm.2014.02.014.
  • [27] SINGH A., LU Y., CHEN C., CAVANAUGH J.M., Mechanical properties of spinal nerve roots subjected to tension at different strain rates, J. Biomech., 2006, 39 (9), DOI: 10.1016/ j.jbiomech.2005.04.023.
  • [28] SUDRES P., EVIN M., WAGNAC E., BAILLY N., DIOTALEVI L., MELOT A., ARNOUX P.J., PETIT Y., Tensile mechanical properties of the cervical, thoracic and lumbar porcine spinal meninges, J. Mech. Behav. Biomed. Mater, 2021, 115, 104280, DOI: 10.1016/j.jmbbm.2020.104280.
  • [29] SZOTEK S., DAWIDOWICZ J., MAJKOWSKI M., SIKORSKI A., MAKSYMOWICZ K., The use of confocal microscopy and sulforhodamine B assay in visualisation of elastin fibers in human fascia lata, Fourth International Fascia Research Congress “Basic science and implications for conventional and complementary health care”, Reston, VA, 2015.
  • [30] SZOTEK S., DAWIDOWICZ J., EYDEN B., MATYSIAK N., CZOGALLA A., DUDZIK G., LEŚNIEWICZ A., MAKSYMOWICZ K., Morphological features of fascia lata in relation to fascia diseases, Ultrastruct. Pathol., 2016, 40 (6), DOI: 10.1080/ 01913123.2016.1239665.
  • [31] SZOTEK S., DAWIDOWICZ J., CZOGALLA A., KARDAS A., MAKSYMOWICZ K., Analysis of selected mechanical properties and structure of fascia lata at microscopic level, In International Conference of the Polish Society of Biomechanics, BIOMECHANICS 2018, Zielona Góra, 2018, 217–218.
  • [32] TENCER A.F., ALLEN B.L. JR, FERGUSON R.L., A biomechanical study of thoracolumbar spine fractures with bone in the canal. Part III. Mechanical properties of the dura and its tethering ligaments, Spine (Phila Pa 1976), 1985, 10 (8), DOI: 10.1097/00007632-198510000-00009.
  • [33] VANDENABEELE F., CREEMERS J., LAMBRICHTS I., Ultrastructure of the human spinal arachnoid mater and dura mater, J. Anat., 1996, 189 (Pt 2) (Pt 2), 417–430.
  • [34] VAN NOORT R., MARTIN T.R., BLACK M.M., BARKER A.T., MONTERO C.G., The mechanical properties of human dura mater and the effects of storage media, Clin. Phys. Physiol. Meas., 1981, 2 (3), DOI: 10.1088/0143-0815/2/3/003.
  • [35] YANG C., YANG X., LAN X., ZHANG H., WANG M., ZHANG Y., XU Y., ZHEN P., Structure and mechanical characteristics of spinal dura mater in different segments of sheep’s spine, Chinese Journal of Reparative and Reconstructive Surgery, 2019, 33 (2), DOI: 10.7507/1002-1892.201807085 (in Chinese).
  • [36] YUAN S., SHI Z., CAO F., LI J., FENG S., Epidemiological Features of Spinal Cord Injury in China: A Systematic Review, Front Neurol., 2018, 9, 683, DOI: 10.3389/fneur.2018.00683.
  • [37] ZARZUR E., Mechanical properties of the human lumbar dura mater, Arq. Neuropsiquiatr., 1996, 54 (3), DOI: 10.1590/ s0004-282x1996000300015.
  • [38] ŻAK M., PEZOWICZ C., Analysis of the impact of the course of hydration on the mechanical properties of the annulus fibrosus of the intervertebral disc, Eur. Spine J., 2016, 25 (9), DOI: 10.1007/s00586-016-4704-0.
  • [39] ŻAK M., PEZOWICZ C., Effect of overload on changes in mechanical and structural properties of the annulus fibrosus of the intervertebral disc, Biomech. Model Mechanobiol., 2021, 20 (6), DOI: 10.1007/s10237-021-01505-w.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a4a61ed-d3a7-4522-805a-63c65c478119
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.