PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie odpadów stałych jako materiałów termoizolacyjnych

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Use of solid waste as thermal insulation materials
Języki publikacji
PL
Abstrakty
PL
W niniejszym artykule dokonano przeglądu możliwości wykorzystania stałych odpadów przemysłowych, rolniczych, z budowy i rozbiórki oraz komunalnych do produkcji innowacyjnych materiałów budowlanych jako izolacji. Produkcja i wykorzystanie ekologicznych i zrównoważonych surowców budowlanych realizuje pragnienie zintegrowania w branży budowlanej większej ilości biodegradowalnych, naturalnych, pochodzących z recyklingu i odnawialnych zasobów. Celem jest zastąpienie tradycyjnie dostępnych materiałów budowlanych ze względu na ich wpływ na środowisko poprzez emisję do powietrza i wytwarzanie od padów. Zaobserwowanym trendem jest produkcja materiałów izolacyjnych poprzez recykling stałych odpadów przemysłowych, rolniczych, budowlanych i rozbiórkowych (C&D) oraz komunalnych, zmniejszając w ten sposób obciążenie środowiska tymi odpadami. Istnieją różne materiały odpadowe, które charakteryzują się dobrymi właściwościami termicznymi, umożliwiającymi efektywne zastąpienie materiałów tradycyjnych. Wydajność tych materiałów izolacyjnych oraz wpływ kilku ich parametrów, takich jak m.in. gęstość czy przewodność cieplna na właściwości termiczne podano po krótkim opisie każdego materiału.
EN
This review investigates the use of industrial, agricultural, C&D, and municipal solid wastes to produce innovative thermal insulating building materials. Production and usage of green and sustainable building materials realizes the desire to integrate more biodegradable, natural, recycled, and renewable resources into the construction industry. The aim is to replace traditionally available construction industry materials due to their environmental impacts through air emissions and waste generation. An observed trend is the production of insulation materials by recycling of industrial, agriculture, construction and demolition (C&D), and municipal solid wastes, thus reducing the environmental burdens of these wastes. There are various waste materials that have good thermal properties, enabling effective replacement of traditional materials. The performance of these insulating materials, and the influence of several materials parameters (density, thermal conductivity coefficient) on thermal performance are reported after a brief description of each material.
Czasopismo
Rocznik
Strony
54--61
Opis fizyczny
Bibliogr. 98 poz., fot., tab.
Twórcy
  • Politechnika Wrocławska. Wydziału Mechaniczno-Energetyczny, Katedra Inżynierii Konwersji Energii
Bibliografia
  • 1. M.S. Al-Homoud, „Performance characteristics and practical applications of common building thermal insulation materials”, „Build Environ” 2005;40(3):353–366.
  • 2. K. Corscadden, J. Biggs, D. Stiles, „Sheep's wool insulation: a sustainable alternative use for a renewable resource?”, „Resour Conserv Recycl” 2014;86:9–15.
  • 3. I. Rushforth, K. Horoshenkov, M. Miraftab, M. Swift, „Impact soundn insulation and viscoelastic properties of underlay manufactured from recycled carpet waste”, „Appl Acoust” 2005;66(6):731–749.
  • 4. J. Perez-Garcia, B., Lippke D. Briggs, J.B. Wilson, J. Bowyer, J. Meil, „The environmental performance of renewable building materials in the context of residential construction”, „Wood Fiber Sci” 2007;37:3–17.
  • 5. J. Pinto, A. Paiva, H. Varum, A. Costa, D. Cruz, S. Pereira, et al., „Corn's cob as a potential ecological thermal insulation material”, „Energy and Buildings” 2011;43(8):1985–1990.
  • 6. H. Binici, O. Aksogan, T. Shah, „Investigation of fibre reinforced mud brick as a building material”, „Constr Build Mater” 2005;19(4):313–318.
  • 7. A. Korjenic, V. Petránek, J. Zach, J. Hroudová, „Development and performance evaluation of natural thermal-insulation materials composed of renewable resources”, „Energy and Buildings” 2011;43(9):2518–2523.
  • 8. A. Paiva, S. Pereira, A. Sá, D. Cruz, H. Varum, J. Pinto, „A contribution to the thermal insulation performance characterization of corn cob particleboards”, „Energy and Buildings” 2012;45:274–279.
  • 9. J. Van de Lindt, J. Carraro, P. Heyliger, C. Choi, „Application and feasibility of coal fly ash and scrap tire fiber as wood wall insulation supplements in residential buildings”, „Resour Conserv Recycl” 2008;52(10):1235–1240.
  • 10. S. Raut, R. Ralegaonkar, S. Mandavgane, „Development of sustainable construction material using industrial and agricultural solid waste: a review of waste-create bricks”, „Constr Build Mater” 2011;25(10):4037–4042.
  • 11. K. Aghaee, M. Foroughi, „Mechanical properties of lightweight concrete partition with a core of textile waste”, „Advances in Civil Engineering” 2013;2013:1–7.
  • 12. F. Asdrubali, A. Pisello, F. D'alessandro, F. Bianchi, C. Fabiani, M. Cornicchia, et al., „Experimental and numerical characterization of innovative cardboard based panels: thermal and acoustic performance analysis and life cycle assessment”, „Build Environ” 2016;95:145–159.
  • 13. C. Ingrao, A.L. Giudice, C. Tricase, R. Rana, C. Mbohwa, V. Siracusa, „Recycled-PET fibre based panels for building thermal insulation: environmental impact and improvement potential assessment for a greener production”, „Sci Total Environ” 2014;493:914–929.
  • 14. R. Fangueiro, P. Marques, C.G. Pereira, „Directionally oriented fibrous structures for llghtweight concrete elements reinforcement”, ICSA, vol. 2010; 2010. p. 1462–1469.
  • 15. S.M. Hejazi, M. Sheikhzadeh, S.M. Abtahi, A. Zadhoush, „A simple review of soil reinforcement by using natural and synthetic fibers”, Constr Build Mater” 2012;30:100–116.
  • 16. M. Massoudinejad, N. Amanidaz, R. M. Santos, R. Bakhshoodeh, „Use of municipal, agricultural, industrial, construction and demolition waste in thermal and sound building insulation materials: a review article”, „Journal of Environmental Health Science and Engineering” 2019, 17:1227–1242. X
  • 17. M. del Mar Barbero-Barrera, O. Pombo, M. de los Angeles Navacerrada, „Textile fibre waste bindered with natural hydraulic lime”, „Compos Part B” 2016;94:26–33.
  • 18. A. Benazzouk, O. Douzane, K. Mezreb, B. Laidoudi, M. Quéneudec, „Thermal conductivity of cement composites containing rubber waste particles: experimental study and modelling”, „Constr Build Mater” 2008;22(4):573–579.
  • 19. H. Binici, O. Aksogan, „Eco-friendly insulation material production with waste olive seeds, ground PVC and wood chips”, „Journal of Building Engineering” 2016;5:260–266.
  • 20. A. Patnaik, M. Mvubu, S. Muniyasamy, A. Botha, R.D. Anandjiwala, „Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies”, „Energy and Buildings” 2015;92:161–169.
  • 21. R. Del Rey, J. Alba, J.P. Arenas, V.J. Sanchis, „An empirical modelling of porous sound absorbing materials made of recycled foam”, „Appl Acoust” 2012;73(6–7):604–609.
  • 22. J.O. Yeon, K.W. Kim, K.S. Yang, J.M. Kim, M.J. Kim, „Physical properties of cellulose sound absorbers produced using recycled paper”, „Constr Build Mater” 2014;70:494–500.
  • 23. V. Ducman, A. Mladenovič, J. Šuput, „Lightweight aggregate based on waste glass and its alkali–silica reactivity”, „Cem Concr Res” 2002;32(2):223–226.
  • 24. T. Luamkanchanaphan, S. Chotikaprakhan, S. Jarusombati, „A study of physical, mechanical and thermal properties for thermal insulation from narrow-leaved cattail fibers”, „APCBEE Procedia” 2012;1: 46–52.
  • 25. N. Mati-Baouche, H. De Baynast, A. Lebert, S. Sun, C.J.S. Lopez-Mingo, P. Leclaire, et al., „Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan”, „Ind Crop Prod” 2014;58:244–250.
  • 26. P. Lertsutthiwong, S. Khunthon, K. Siralertmukul, K. Noomun, S. Chandrkrachang, „New insulating particleboards prepared from mixture of solid wastes from tissue paper manufacturing and corn peel”, „Bioresour Technol” 2008;99(11):4841–4845.
  • 27. H. Binici, M. Eken, M. Kara, M. Dolaz, editors, „An environmentfriendly thermal insulation material from sunflower stalk, textile waste and stubble fibers: International Conference on Renewable Energy Research and Applications (ICRERA); 2013”, 2013, IEEE.
  • 28. S. Panyakaew, S. Fotios, editors 321: „Agricultural Waste Materials as Thermal Insulation for Dwellings in Thailand: Preliminary Results”, 25 Conference on Passive and Low Energy Architecture, Dublin 2008.
  • 29. S. Herrero, P. Mayor, F. Hernández-Olivares, „Influence of proportion and particle size gradation of rubber from end-of-life tires on mechanical, thermal and acoustic properties of plaster–rubber mortars”, „Mater Des” 2013;47:633–642.
  • 30. E. Kearsley, P. Wainwright, „The effect of high fly ash content on the compressive strength of foamed concrete”, „Cem Concr Res” 2001;31(1):105–112.
  • 31. C. Leiva, C. Arenas, L. Vilches, B. Alonso-Fariñas, M. Rodriguez Galán, „Development of fly ash boards with thermal, acoustic and fire insulation properties”, „Waste Manag” 2015;46:298–303.
  • 32. Y. Y-l, G-z Li, X. X-s, Z. Z-j, „Properties and microstructures of plant-fiber-reinforced cement-based composites”, „Cem Concr Res” 2000;30(12):1983–1986.
  • 33. F. Asdrubali, A. Pisello, F. D’Alessandro, F. Bianchi, M. Cornicchia, C. Fabiani, „Innovative cardboard based panels with recycled materials from the packaging industry: thermal and acoustic performance analysis”, „Energy Procedia” 2015;78:321–326. 1240 „J Environ Health Sci Engineer” (2019) 17:1227–1242.
  • 34. H. Binici, O. Aksogan, „Insulation material production from onion skin and peanut shell fibres, fly ash, pumice, perlite, barite, cement and gypsum”, „Materials Today Communications” 2017;10:14–24.
  • 35. Z.N. NGouloure, B. Nait-Ali, S. Zekeng, E. Kamseu, U. Melo, D. Smith, et al., „Recycled natural wastes in metakaolin based porous geopolymers for insulating applications”, „Journal of Building Engineering” 2015;3:58–69.
  • 36. P. Posi, C. Ridtirud, C. Ekvong, D. Chammanee, K. Janthowong, P. Chindaprasirt, „Properties of lightweight high calcium fly ash geopolymer concretes containing recycled packaging foam”, „Constr Build Mater” 2015;94:408–413.
  • 37. H. Benkreira, A. Khan, K.V. Horoshenkov, „Sustainable acoustic and thermal insulation materials from elastomeric waste residue”, „Chem Eng Sci” 2011;66(18):4157–4171.
  • 38. H. Binici, R. Gemci, A. Kucukonder, H.H. Solak, „Investigating sound insulation, thermal conductivity and radioactivity of chipboards produced with cotton waste, fly ash and barite”, „Constr Build Mater” 2012;30:826–832.
  • 39. V. Corinaldesi, A. Mazzoli, R. Siddique, „Characterization of lightweight mortars containing wood processing by-products waste”, „Constr Build Mater” 2016;123:281–289.
  • 40. A. Laukaitis, R. Žurauskas, J. Kerien, „The effect of foam polystyrene granules on cement composite properties”, „Cem Concr Compos” 2005;27(1):41–47.
  • 41. C. Leiva, J. Solís-Guzmán, M. Marrero, C.G. Arenas, „Recycled blocks with improved sound and fire insulation containing construction and demolition waste”, „Waste Manag” 2013;33(3):663–671.
  • 42. L. Wang, S.S. Chen, D.C. Tsang, C.S. Poon, K. Shih, „Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards”, „Constr Build Mater” 2016;125:316–325.
  • 43. L. Zhu, J. Dai, G. Bai, F. Zhang, „Study on thermal properties of recycled aggregate concrete and recycled concrete blocks” „Constr Build Mater” 2015;94:620–628.
  • 44. F. Asdrubali, F. D'Alessandro, S. Schiavoni, „A review of unconventional sustainable building insulation materials”, „Sustain Mater Technol” 2015;4:1–17.
  • 45. EN B. 12664, „Thermal performance of building materials and products. Determination of thermal resistance by means of guarded hot plate and heat flow meter methods dry and moist products of medium and Low thermal resistance”, British Standards Institution, London 2001.
  • 46. ISO E. 12667, „Thermal performance of building materials and products-determination of thermal resistance by means of guarded hot plate and heat flow meter methods-products of high and medium thermal resistance”, in: „Dry and moist products of medium and low thermal resistance”, 2001.
  • 47. Standard A. C518–10, 2010, „Standard Test Method for SteadyState Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus”, ASTM International, West Conshohocken, PA, 2010.
  • 48. R.D.L. Vollaro, C. Guattari, L. Evangelisti, G. Battista, E. Carnielo, P. Gori, „Building energy performance analysis: a case study”, „Energy and Buildings” 2015;87:87–94.
  • 49. F.G. Li, A. Smith, P. Biddulph, I.G. Hamilton, R. Lowe, A. Mavrogianni, et al., „Solid-wall U-values: heat flux measurements compared with standard assumptions”, „Build Res Inf” 2015;43(2):238–252.
  • 50. ISO E. 13786: 2007, „Thermal performance of building components–dynamic thermal characteristics–calculation methods”, International Organization for Standardization 2007.
  • 51. C. Onésippe, N. Passe-Coutrin, F. Toro, S. Delvasto, K. Bilba, M.A. Arsène, „Sugar cane bagasse fibres reinforced cement composites: thermal considerations”, „Compos A: Appl Sci Manuf” 2010;41(4):549–556.
  • 52. M.V. Madurwar, R.V. Ralegaonkar, S.A. Mandavgane, „Application of agrowaste for sustainable construction materials: a review”, „Constr Build Mater” 2013;38:872–878.
  • 53. S. Schiavoni, F. Bianchi, F. Asdrubali, „Insulation materials for the building sector: a review and comparative analysis”, „Renew Sust Energ Rev” 2016;62:988–1011.
  • 54. A. Hadded, S. Benltoufa, F. Fayala, A. Jemni, „Thermo physical characterisation of recycled textile materials used for building insulating”, „Journal of Building Engineering” 2016;5:34–40.
  • 55. A.E. Tiuc, H. Vermeşan, T. Gabor, O. Vasile, „Improved sound absorption properties of polyurethane foam mixed with textile waste”, „Energy Procedia” 2016;85:559–565.
  • 56. A. Briga-Sa, D. Nascimento, N. Teixeira, J. Pinto, F. Caldeira, H. Varum, et al., „Textile waste as an alternative thermal insulation building material solution”, „Constr Build Mater” 2013;38:155–160.
  • 57. P. Bekhta, E. Dobrowolska, „Thermal properties of wood-gypsum boards”, „Holz als Roh-und Werkstoff” 2006;64(5):427–428.
  • 58. S.C. Ng, K.S. Low, „Thermal conductivity of newspaper sandwiched aerated lightweight concrete panel”, „Energy and Buildings” 2010;42(12):2452–2456.
  • 59. S. Panyakaew, S. Fotios, „New thermal insulation boards made from coconut husk and bagasse”, „Energy and Buildings” 2011;43(7): 1732–1739.
  • 60. R. Demirboğa, R. Gül, „The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete”, „Cem Concr Res” 2003;33(5):723–727.
  • 61. P. Sukontasukkul, „Use of crumb rubber to improve thermal and sound properties of pre-cast concrete panel”, „Constr Build Mater” 2009;23(2):1084–1092.
  • 62. J.L. Ruiz-Herrero, D.V. Nieto, A. López-Gil, A. Arranz, A. Fernández, A. Lorenzana, et al., „Mechanical and thermal performance of concrete and mortar cellular materials containing plastic waste”, „Constr Build Mater” 2016;104:298–310.
  • 63. S.T. Nguyen, J. Feng, S.K. Ng, J.P. Wong, V.B. Tan, H.M. Duong, „Advanced thermal insulation and absorption properties of recycled cellulose aerogels”, „Colloids Surf A Physicochem Eng Asp” 2014;445:128–134.
  • 64. Normalización OId. ISO 10534-2, „Acoustics, determination of sound Abosorption coefficient and impedance in impedance tubes. Part 2. Transfer-function method”, ISO; 1998.
  • 65. A. Sampathrajan, N. Vijayaraghavan, K. Swaminathan, „Mechanical and thermal properties of particle boards made from farm residues”, „Bioresour Technol” 1992;40(3):249–251.
  • 66. R. Bakhshoodeh, N. Alavi, A.S. Mohammadi, H. Ghanavati, „Removing heavy metals from Isfahan composting leachate by horizontal subsurface flow constructed wetland”, „Environ Sci Pollut Res” 2016;23(12):12384–12391.
  • 67. J. Zach, J. Hroudová, J. Brožovský, Z. Krejza, A. Gailius, „Development of thermal insulating materials on natural base for thermal insulation systems”, „Procedia Engineering” 2013;57:1288–1294.
  • 68. M.L.D. Jayaranjan, E.D. Van Hullebusch, A.P. Annachhatre, „Reuse options for coal fired power plant bottom ash and fly ash”, „Rev Environ Sci Biotechnol” 2014;13(4):467–486.
  • 69. S. Kizgut, D. Cuhadaroglu, S. Samanli, „Stirred grinding of coal bottom ash to be evaluated as a cement additive. Energy Sources, Part A: Recovery”, „Utilization, and Environmental Effects” 2010;32(16):1529–1539.
  • 70. M.Y.J. Liu, U.J. Alengaram, M.Z. Jumaat, K.H. Mo, „Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete”, „Energy and Buildings” 2014;72:238–245.
  • 71. P. Agamuthu, „Challenges in sustainable management of construction and demolition waste. In: Challenges in sustainable management of construction and demolition waste”, SAGE Publications Sage UK, London 2008.
  • 72. P. Mercader-Moyano, M. Marrero, J. Solís-Guzmán, M.V.d Montes Delgado, A. Ramírez de Arellano Agudo, „Cuantificación de los recursos materiales consumidos en la ejecución de la cimentación”, „Inf Constr” 2010;62(517):125–132.
  • 73. A. Kanellopoulos, D. Nicolaides, M.F. Petrou, „Mechanical and durability properties of concretes containing recycled lime powder and recycled aggregates”, „Constr Build Mater” 2014;53:253–259.
  • 74. EPD H, „Monitoring of Solid Waste in Hong Kong: Waste Statistics for 2013”, Environmental Protection Department, Hong Kong 2015.
  • 75. H.X. Yu, C.R. Fang, M.P. Xu, F.Y. Guo, W.J. Yu, „Effects of density and resin content on the physical and mechanical properties of scrimber manufactured from mulberry branches”, „J Wood Sci” 2015;61(2):159–164.
  • 76. R. Bakhshoodeh, N. Alavi, P. Paydary, „Composting plant leachate treatment by a pilot-scale, three-stage, horizontal flow constructed wetland in Central Iran”, „Environ Sci Pollut Res” 2017;24(30): 23803–23814.
  • 77. H. Singh, Y. Singh, editors, „Applications of recycled and waste materials in infrastructure projects”, International conference on
  • 78. S. Sequeira, D.V. Evtuguin, I. Portugal, „Preparation and properties of cellulose/silica hybrid composites”, „Polym Compos” 2009;30(9): 1275–1282.
  • 79. M. Palumbo, J. Avellaneda, A. Lacasta, „Availability of crop byproducts in Spain: new raw materials for natural thermal insulation”, „Resour Conserv Recycl” 2015;99:1–6. „J Environ Health Sci Engineer” (2019) 17:1227–1242 1241
  • 80. F. Asdrubali, „Survey on the acoustical properties of new sustainable materials for noise control”, vol. 30. „Tampere: Proceedings of Euronoise”, 2006.
  • 81. F. Asdrubali, editor, „The role of life cycle assessment (LCA) in the design of sustainable buildings: thermal and sound insulating materials”, Euronoise 2009; 2009.
  • 82. I.Z. Bribián, A.V. Capilla, A.A. Usón, „Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential”, „Build Environ” 2011;46(5):1133–1140.
  • 83. H. Binici, M. Eken, M. Dolaz, O. Aksogan, M. Kara, „An environmentally friendly thermal insulation material from sunflower stalk, textile waste and stubble fibres”, „Constr Build Mater” 2014;51:24–33.
  • 84. J. Xu, R. Sugawara, R. Widyorini, G. Han, S. Kawai, „Manufacture and properties of low-density binderless particleboard from kenaf core”, „J Wood Sci” 2004;50(1):62–67.
  • 85. D.W. Yarbrough, K.E. Wilkes, P.A. Olivier, R.S. Graves, A. Vohra, „Apparent thermal conductivity data and related information for rice hulls and crushed pecan shells”, „Thermal Conductivity” 2005;27:222–230.
  • 86. C. Buratti, E. Belloni, E. Lascaro, F. Merli, P. Ricciardi, „Rice husk panels for building applications: thermal, acoustic and environmental characterization and comparison with other innovative recycled waste materials”, „Constr Build Mater” 2018;171:338–349.
  • 87. R. Al-Juruf, F. Ahmed, I. Alam, H. Abdel-Rahman, „Development of heat insulating materials using date palm leaves”, „J Therm Insul” 1988;11(3):158–164.
  • 88. Z. X-y, F. Zheng, H.G. Li, L. C-l, „An environment-friendly thermal insulation material from cotton stalk fibers”, „Energy and Buildings” 2010;42(7):1070–1074.
  • 89. J. Khedari, N. Nankongnab, J. Hirunlabh, S. Teekasap, „New lowcost insulation particleboards from mixture of durian peel and coconut coir”, „Build Environ” 2004;39(1):59–65.
  • 90. I. Oancea, C. Bujoreanu, M. Budescu, M. Benchea, C.M. Grădinaru, „Considerations on sound absorption coefficient of sustainable concrete with different waste replacements”, „J Clean Prod” 2018;203: 301–312.
  • 91. C. Arenas, C. Leiva, L. Vilches, J.G. Ganso, „Approaching a methodology for the development of a multilayer sound absorbing device recycling coal bottom ash”, „Appl Acoust” 2017;115:81–87.
  • 92. C.S. Pathak, S.A. Mandavgane, „Application of recycle paper mill waste (rpmw) as a thermal insulation material”, „Waste and biomass valorization” 2018. p. 1–10.
  • 93. G. Tsaousi, L. Profitis, I. Douni, E. Chatzitheodorides, D. Panias, „Development of lightweight insulating building materials from perlite wastes”, „Mater Constr” 2019;69(333):175.
  • 94. S.B. Park, D.S. Seo, J. Lee, „Studies on the sound absorption characteristics of porous concrete based on the content of recycled aggregate and target void ratio”, „Cem Concr Res” 2005;35(9):1846–1854.
  • 95. M. Pedreño-Rojas, M. Morales-Conde, F. Pérez-Gálvez, C. Rodríguez Liñán, „Eco-efficient acoustic and thermal conditioning using false ceiling plates made from plaster and wood waste”, „J Clean Prod” 2017;166:690–705.
  • 96. N. Phonphuak, S. Kanyakam, P. Chindaprasirt, „Utilization of waste glass to enhance physical–mechanical properties of fired clay brick”, „J Clean Prod” 2016;112:3057–3062.
  • 97. A.N. Raut, C.P. Gomez, „Development of thermally efficient fibrebased eco-friendly brick reusing locally available waste materials”, „Constr Build Mater” 2017;133:275–284.
  • 98. M. Madrid, A. Orbe, H. Carré, Y. García, „Thermal performance of sawdust and lime-mud concrete masonry units”, „Constr Build Mater” 2018;169:113–123.
Uwagi
Bibliografia dostępna tylko na stronie www czasopisma.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a498dd0-1a31-4db6-9e9f-02501aff911a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.