Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Article contains a detailed analysis and a preliminary selection of potential CO2 emitters that can supply gas for CCS-EOR projects in oil fields clusters in Poland. The idea of CO2 injection into clusters arises from the fact that oil reservoirs in Poland are relatively small, but very often located close together. Reservoirs grouping significantly increases the potential storage capacity and improves economic indicators. In addition, CCS-EOR projects combine CO2 storage (CCS) with an increase in production from mature oil fields (EOR). The analysis was performed using a database of carbon dioxide emitters in Poland created by the National Centre for Emissions Management. This database contains a list of all registered CO2 producers with annual emissions exceeding 1 Mg. On this basis, potential CO2 sources for previously selected four clusters of oil reservoirs were chosen.
Czasopismo
Rocznik
Tom
Strony
295--307
Opis fizyczny
Bibliogr. 7 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland
autor
- AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland
autor
- AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland
autor
- AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland
Bibliografia
- [1] Brown K. et al.: The history and development of the IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project in Saskatchewan, Canada (the world largest CO2 for EOR and CCS program). Petroleum, vol. 3, iss. 1, 2017, pp. 3–9.
- [2] Jakobsen J., Roussanaly S., Anantharaman R.: A techno-economic case study of CO2 capture, transport and storage chain from a cement plant in Norway. Journal of Cleaner Production, vol. 144, 2017, pp. 523–539.
- [3] Kosowski P., Mikołajczak E.: Characteristics of industrial CO2 emissions in Poland in 2014 in terms of its underground storage. AGH Drilling, Oil, Gas, vol. 33, no. 1, 2016, pp. 117–133.
- [4] Kwak Dong-Hun, Jin-Kuk Kim: Techno-economic evaluation of CO2 enhanced oil recovery (EOR) with the optimization of CO2 supply. International Journal of Greenhouse Gas Control, 58, 2017, pp. 169–184.
- [5] Lacy R. et al.: Initial assessment of the potential for future CCUS with EOR projects in Mexico using CO2 captured from fossil fuel industrial plants. International Journal of Greenhouse Gas Control, 19, 2013, pp. 212–219.
- [6] Tapia J.F.D. et al.: Optimal CO2 allocation and scheduling in enhanced oil recovery (EOR) operations. Applied Energy, 184, 2016, pp. 337–345.
- [7] Tapia J.F.D. et al.: Planning and scheduling of CO2 capture, utilization and storage (CCUS) operations as a strip packing problem. Process Safety and Environmental Protection, 104, 2016, pp. 358–372.
Uwagi
EN
The research leading to these results has received funding from the Polish-Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009–2014 in the frame of Project Contract no. Pol-Nor/235294/99/2014
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a453a05-4053-4ad1-bc0b-edd79487126a