PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of lead ions from acid aqueous solutions and acid mine drainage using zeolite bearing tuff

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The adsorption of lead ions onto a zeolite bearing tuff (stilbite) from synthetic acid aqueous solution and acid mine drainage taken from Sasa mine, Macedonia, is elaborated in this paper. The results present that adsorption occurs efficiently in both of cases. The physical and chemical properties of the used natural material, zeolite bearing tuff, are characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy. The concentration of metal ions in solution before and after treatment is obtained by AES-ICP. The effectivity of zeolite bearing tuff is determined through a series of experiments under batch conditions from single ion solutions, whereby the main parameters are the effects of initial pH of solution, mass of adsorbent, initial metal concentration in solution, contacting time and competing cations. The maximum capacity of zeolite bearing tuff for removal of lead ions from solution is determined by equilibrium studies. The experimental obtained data are fitted with Freundlich and Langmuir adsorption models. The experimental data are better fitted with Langmuir adsorption isotherm. Zeolite bearing tuff is effective adsorbent for treating acid mine drainage. The results showed that 99% of lead ions are removed from acid mine drainage, i.e. the concentration of lead ions from 0.329 mg/dm3 decrease to 0.002 mg/dm3. The pH value of acid mine drainage from 3.90 after treatment with zeolite bearing tuff increases to 5.36.
Rocznik
Strony
87--96
Opis fizyczny
Bibliogr.26 poz., tab., wykr.
Twórcy
autor
  • Goce Delcev University, Faculty of Natural and Technical Sciences
autor
  • Goce Delcev University, Faculty of Natural and Technical Sciences
autor
  • Goce Delcev University, Faculty of Natural and Technical Sciences
autor
  • Goce Delcev University, Faculty of Natural and Technical Sciences
Bibliografia
  • 1. Alvarez-Ayuso, E. Garcia-Sanchez, A. & Querol, X. (2003). Purification of metal electroplating waste waters using zeolites, Water Research, 37, pp. 4855–4862.
  • 2. Armenante, P.M. (1999). Adsorption, In: Industrial Waste Control: Physical and Chemical Treatment, New Jersey Institute of Technology 1999.
  • 3. Avila, M.A.S. (2005). Experiment and modelling of the Competititive Sorption and Transport of Chlorinated Ethenes in Porous Media, Gottingen: Cuvillier Verlag, 2005.
  • 4. Barrer, V.R.M. (1978). Zeolites and clay minerals as sorbents and molecular sieves, London: Academic Press Inc., 1978.
  • 5. Cabrera, C., Gabaldon, C. & Marzal, P. (2005). Sorption characteristics of heavy metal ions by a natural zeolite, Journal of Chemical Technology and Biotechnology, 80, pp. 477–481.
  • 6. Calvo, B., Canoira, L., Morante, F., Martínez-Bedia, J.M., Vinagre, C., García-González, J.E., Elsen, J. & Alcantara, R. (2009). Continuous elimination of Pb2+, Cu2+, Zn2+, H+ and NH4+ from acidic waters by ionic exchange on natural zeolites, Journal of Hazardous Materials, 166, 2–3, pp. 619–627.
  • 7. Ciobanu, G., Barna, S. & Harja, M. (2016). Kinetic and equilibrium studies on adsorption of Reactive Blue 19 dye from aqueous solutions by nanohydroxyapatite adsorbent, Archives of Environmental Protection, 42, 2, pp. 3–11.
  • 8. Colella, C. (1991). Ion exchange equilibria in zeolite minerals, Mineralium Deposita, 31, pp. 554–562.
  • 9. Connors, K.A. (1990). Chemical Kinetics: The study of reaction rates in solution, VCH Publishers, USA, 1990.
  • 10. Erdem, E., Karapinar, N. & Donat, R. (2004). The removal of heavy metal cations by natural zeolites, Journal of Colloid and Interface Science, 280, 2, pp. 309–314.
  • 11. Evangelou, V. (1998). Pyrite chemistry: the key for abatement of acid mine drainage, In: Acidic Mining Lakes: Acid Mine Drainage, Limnology and Reclamation, Geller, W., Klapper, H. & Shultze, M. (Eds.), Berlin, Springer, pp. 197–222.
  • 12. Gamze Turan, N. & Mesci, B. (2011). Adsorption of Copper(II) and Zinc(II) Ions by Various Agricultural By-Products. Experimental Studies and Modelling, Environment Protection Engineering, 31, 4, pp. 143–161.
  • 13. Golomeova, M. & Zendelska, A. (2016). Application of Some Natural Porous Raw Materials for Removal of Lead and Zinc from Aqueous Solutions, In: Microporous and Mesoporous Materials, Dariani, R.S. (Ed.), InTech, pp. 21–49.
  • 14. Gunay, A., Arslankaya, E. & Tosun, I. (2007). Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics, Journal of Hazardous Materials, 146, p. 362–371.
  • 15. Jenkins, D.A., Johnson, D.B. & Freeman, C. (2000). Mynydd Parys Cu-Pb-Zn mines: mineralogy, microbiology and acid mine drainage, In: Environmental mineralogy: microbial interactions, anthropogenic influences, contaminated land and waste management, Cotter-Howells, J.D. (Ed.), London, Mineralogy Society, pp. 161–180.
  • 16. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of American Chemical Society, 40, pp. 1361–1403.
  • 17. Low, K.S., Lee, C.K. & Lee, K.P. (1993). Sorption of copper by dye treated oil-palm fibers, Bioresource technology, 44, 2, pp. 109–112.
  • 18. Mobasherpour, I., Salahi, E. & Pazouki, M. (2012). Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: Adsorption isotherm study, Arabian Journal of Chemistry, 5, 4, pp. 439–446.
  • 19. Moreno, N. Querol, X. & Ayora, C. (2001). Utilization of zeolites synthesised from coal fly ash for the purification of acid mine waters, Environmental Science and Technology, 35, pp. 3526–3534.
  • 20. Motsi, T. (2010). Remediation of acid mine drainage using natural zeolite, The University of Birmingham.
  • 21. Nightingale, E.R. (1959). Phenomenological theory of ion solvation. Effective radii of hydrated ions, The Journal of Physical Chemistry, 63 (9), p. 1381–1387.
  • 22. Papageorgiou, K.S., Katsaros, K.F., Kouvelos, P.E., Nolan, W.J., LeDeit, H. & Kanellopoulos, K.N. (2006). Heavy metal sorption by calcium alginate beads from Laminaria digitata, Journal of Hazardous Materials, B137, pp. 176–1772.
  • 23. Penreath, R. (1994). The discharge of waters from active and abandoned mines, In: Mining and its environmental impact. Issues in Environmental Science and Technology no. 1, Hester, R.E. & Harrison, R.M. (Ed.), Royal Society of Chemistry, Herts, UK, 1994.
  • 24. Sprynskyy, M., Boguslaw B., Terzyk, A.P. & Namiesnik, J. (2006). Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+ and Cd2+) adsorption on clinoptilolite, Journal of Colloid and Interface Science, 304, pp. 21–28.
  • 25. U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, (2007). Toxicological profile for lead.
  • 26. Volkan, Ç. (2006). Use of clinoptilolite for copper and nickel removal from aqueous solutions, The graduate school of natural and applied sciences of middle east technical university, 2006.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a43f222-bbfe-420c-8796-eea15206930b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.