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Abstract

∗∗ This paper presents a novel fast algorithm for feedforward neural networks
training. It is based on the Recursive Least Squares (RLS) method commonly
used for designing adaptive filters. Besides, it utilizes two techniques of linear al-
gebra, namely the orthogonal transformation method, called the Givens Rotations
(GR), and the QR decomposition, creating the GQR (symbolically we write GR
+ QR = GQR) procedure for solving the normal equations in the weight update
process. In this paper, a novel approach to the GQR algorithm is presented. The
main idea revolves around reducing the computational cost of a single rotation by
eliminating the square root calculation and reducing the number of multiplications.
The proposed modification is based on the scaled version of the Givens rotations,
denoted as SGQR. This modification is expected to bring a significant training
time reduction comparing to the classic GQR algorithm. The paper begins with
the introduction and the classic Givens rotation description. Then, the scaled
rotation and its usage in the QR decomposition is discussed. The main section
of the article presents the neural network training algorithm which utilizes scaled
Givens rotations and QR decomposition in the weight update process. Next, the
experiment results of the proposed algorithm are presented and discussed. The
experiment utilizes several benchmarks combined with neural networks of various
topologies. It is shown that the proposed algorithm outperforms several other
commonly used methods, including well known Adam optimizer.
Keywords: neural network training algorithm, QR decomposition, scaled Givens
rotations, approximation, classification.
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1 Introduction
The constructs of artificial intelligence can

be found in almost all aspects of everyday life.
Numerous applications are utilized in a wide va-
riety of industry branches, such as automotive,
environmental protection, banking, finance or
even medicine [1, 2, 4, 16, 19, 26, 27, 28, 31,
32, 34, 35]. One of the most popular AI ap-
plications are neural networks. They are sub-
jects of countless scientific research projects
[3, 6, 21, 23, 37]. However, a neural network
cannot be utilized for a particular task until it
has been specifically prepared for it. This pro-
cess is often called training or teaching. Neu-
ral network training is an iterative process per-
formed automatically based on a set of initial
values, hyperparameters, and a dedicated train-
ing set.

Nowadays, most modern neural network
training algorithms are derived directly from
the backpropagation algorithm [36] and its
momentum variant [30]. Algorithms such as
Adam, AdaDelta, AdaGrad, or NAG utilize the
idea of the momentum built on the classic first
order training approach. While all these meth-
ods report a good performance, in specific cases
they might struggle with yielding satisfactory
results [15, 17, 25, 29, 33, 38]. An advantage
presented by these algorithms is a low imple-
mentation cost and great scalability. On the
other hand, there are such algorithms as the
Levenberg-Marquard algorithm [22]. These sec-
ond order methods are well known for their
great performance but very complex imple-
mentation and certain limitations while dealing
with large training samples [13]. Currently, re-
searchers are still developing new training algo-
rithms so as to utilize the latest CPU and GPU
hardware capabilities.

In this paper, a new neural network train-
ing algorithm is presented based on the Re-
cursive Least Squares (RLS) method commonly
used for designing adaptive filters. Any use of
the RLS algorithm requires solving the normal
equations and, when applied to neural network
training, the solution describes the weights up-
date process. The proposed method for neural
network training and recursive solving of nor-

mal equations originates from the GQR algo-
rithm which utilizes the Givens rotations in the
QR decomposition process [7, 14]. As presented
in the subsequent sections, the classic rotation
requires square root computation. The square
root itself takes more time to calculate than
multiplication. To mitigate this inconvenience,
the scaled rotations have been developed and
presented in [18]. Based on that idea, we pro-
pose a new neural network training algorithm
— SGQR (Scaled Givens rotations in QR de-
composition).

The proposed modification of the GQR al-
gorithm inherits many properties from its an-
cestor. Especially, this method can be applied
to any feedforward neural network (FF) that
utilizes any differentiable activation function.
The classic neural network is built of neurons
which are logically organized into layers. The
last layer has a special meaning and its output
is treated as a network response. Due to that,
the last layer is called the output layer. Also, it
is the only layer where the actual network error
can be explicitly calculated. Errors of the other
layers are calculated by the backpropagation al-
gorithm. Because of that these layers are called
hidden layers.

Connection types and the number of neu-
rons define the topology of a network. In Figure
1 three common topologies of neural networks
are presented. A fully connected cascade neu-
ral network (FCC) contains only a single neuron
per layer. Due to that, the term layer is often
omitted while dealing with FCC networks. In
our study, by an FCC-n we refer to an FCC
network that contains n neurons. An exam-
ple structure of the FCC network is shown in
Figure 1(a). FCC networks utilize a high num-
ber of weights thanks to additional connections.
Because of that, they achieve good results even
with a small number of neurons. The fully con-
nected multi layered perceptron (FCMLP) is a
special case of the FCC. Networks of such type
maintain additional connections and can con-
tain any number of neurons per layer. An exam-
ple structure of the FCMLP network is shown
in Figure 1(b).
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Figure 1. Various topologies of neural
networks: (a) FCC, (b) FCMLP, (c) MLP.

The multilayered perceptron (MLP) is a
simple neural network that does not have any
additional connections between layers as is the
case with FCMLP and FCC networks. They are
easy to implement, but require more neurons
in order to achieve satisfactory training results.
An exemplary structure of the MLP network is
shown in Figure 1(c). In our study, fully con-
nected and classic multilayered perceptron net-
works are referred to as (FC)MLP[-nl]L, where
nl is the neuron count of the l-th layer, and
l ∈ [1, . . . ,L] is the layer index.

Based on the properties of the scaled rota-
tions, it is expected that the SGQR algorithm

achieves a better performance than the GQR
algorithm which utilizes the classic rotations.
Our work presented in this paper can be sum-
marized by the following highlights:

1. A mathematical background for the classic
and scaled rotations is presented.

2. A mathematical description of scaled rota-
tions in the QR decomposition process is dis-
cussed.

3. A full mathematical derivation of the weight
update in the SGQR algorithm is presented.

4. The proposed algorithm has been tested in
six benchmarks in multiple scenarios and
with various neural network topologies.

5. All results have been compared with the
classic GQR and other reference algorithms.
It is shown that the proposed algorithm in
most cases outperforms several other com-
monly used methods, including well known
Adam optimizer.

All presented below techniques of linear algebra
are used (see Sections 2 - 4) to solve the normal
equations and update neural network weights
(see Section 5) in the process of training them.

2 The classic Givens rotation
The Givens rotation [20] is an elementary

orthogonal transformation which is widely used
in numerical applications. The most common
variant of the rotation is limited to a two-
dimensional plain stretched between two vec-
tors span{ep,eq}(1 ≤ p < q ≤ n). The rotation
is described by a rotation matrix whose struc-
ture is given as

Gpq =




1 · · · 0
. . .

c · · · s
...

... . . . ...
...

−s · · · c
. . .

0 · · · 1




p

q

p q
(1)
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The matrix given by (1) is an orthogonal ma-
trix which is referred to as a rotation matrix
or rotation. Compared to the Identity matrix,
the rotation matrix differs only in terms of four
elements gpp = gqq = c and gpq = −gqp = s, where

c2 +s2 = 1 (2)

From (2), it is known that GT
pqGpq = I, which

proves that matrix Gpq is an orthogonal ma-
trix. Let a ∈ Rn. The rotation is performed by
an orthogonal transformation given as

a → ā = Gpqa (3)

From (1) and (3), it is known that the rotation
is performed as

āp = cap +saq

āq = −sap + caq

āi = ai (i ̸= p,q; i = 1, . . . ,n)
(4)

From equations (4) we know that only two el-
ements of vector a are being changed by a ro-
tation. This property is used to find the values
of c and s, so the aq element is eliminated by a
rotation. Let us consider

āq = −sap + caq = 0 (5)

To satisfy equation (5), parameters c and s of
rotation matrix Gpq need to be calculated in
the following manner

c = ap

ρ
, s = aq

ρ
, where ρ =

√
a2

p +a2
q (6)

In order to maintain numerical stability in com-
puting ρ, the following formula is applied

ρ =




ap

√
1+(aq/ap)2, for |ap| ≥ |aq|

aq

√
1+(ap/aq)2, for |ap| < |aq|

(7)

3 The scaled Givens rotation
Let us consider the following transforma-

tions of vector a ∈ Rn and matrix A ∈ Rn,r

a → ā = Gpqa, A → Ā = GpqA (8)

In both cases matrix Gpq needs to satisfy con-
dition (5). In scaled Givens rotations we want

to mitigate the explicit square root calculation
from equation (7) and limit the number of mul-
tiplications. Let us introduce scaled multipliers
K2 and K̄2:

a = Kd, where K = diag (√χl)

ā = K̄d̄, where K̄ = diag
(√

χ̄l

) (9)

where χl, χ̄l > 0(l = 1, . . . ,n). Then, matrix
Gpq takes a new scaled form

Gpq = KFpqK−1 (10)

where Fpq is:

Fpq =




1 · · · 0
. . .

α · · · β
...

... . . . ...
...

−γ · · · δ
. . .

0 · · · 1




p

q

p q
(11)

Equation (3) takes the form

K2 → K̄2

d → d̄ = Fpqd
(12)

and equation (5) is changed to

d̄q = −γdp + δdq = 0 (13)

From (10) we obtain

χ̄l = χl for (l ̸= p,q; l = 1, ...,n) (14)

c = α

√
χ̄p

χp
= δ

√
χ̄q

χq
, s = β

√
χ̄p

χq
= γ

√
χ̄q

χp
(15)

while equation (2) still needs to be satis-
fied. At this stage, we introduce 6 variables
α,β,δ,γ, χ̄p, χ̄q and only four equations (13),
(15) and (2). Due to that, 2 variables have to
become parameters, so two computational vari-
ants are possible. The alternative Fpq matrix
variants are the following (limited only to valid
2×2 blocks)

[
1 β

−γ 1

]
and

[
α 1

−1 δ

]
(16)
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āq = −sap + caq
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From (6) and (9) we obtain

c2 =
a2

p

a2
p +a2

q

=
χpd2

p

χpd2
p +χqd2

q

s2 =
a2

q

a2
p +a2

q

=
χqd2

q

χpd2
p +χqd2

q

(17)

Let us consider two computational cases:
Case 1: c ̸= 0 i.e. dp ̸= 0, where

α = δ = 1 (18)

from (13) we obtain

γ = dq

dp
(19)

From (15) and (17), we know that χ̄p/χp =
χ̄q/χq so

β = γχq

χp
= γχ̄q

χ̄p
(20)

Also, from (15) we know that χ̄i = χic
2 for i =

p,q. Taking (15) and

1
c2 = c2 +s2

c2 = 1+ s2

c2 = 1+
χqd2

q

χpd2
p

= 1+βγ
def= τ

(21)
into consideration, we obtain the following val-
ues

χ̄p = χp

τ
, χ̄q = χq

τ
(22)

and finally

d̄p = dp +βdq = dp +βγdp = dpτ (23)

Case 2: s ̸= 0 i.e. dq ̸= 0, where

β = γ = 1 (24)

from (13) we obtain

δ = dp

dq
(25)

α = δχp

χq
= δχ̄q

χ̄p
. (26)

From (15), we know that χ̄p = χqs2 and χ̄q =
χps2. Taking (15) and

1
s2 = c2 +s2

s2 = 1+ c2

s2 = 1+
χpd2

p

χqd2
q

= 1+αδ
def= τ

(27)

into consideration, we obtain the following val-
ues

χ̄p = χq

τ
, χ̄q = χp

τ
(28)

and finally

d̄p = αdp +dq = αδdq +dq = dqτ (29)

Equations (14,18-29) are used to determine pa-
rameters α,β,γ,δ of matrix Fpq and scaling
multipliers χ̄i. The calculated parameters can
be applied to matrix A = KE in order to ob-
tain matrix Ā = K̄Ē = ḠpqĒ where Ē has the
following values

ēi,j = ei,j for j = 1, . . . , r; i ̸= p,q; i = 1, ...,n

ēp,j = ep,j +βeq,j

ēq,j = −γep,j +eq,j

}
for j = 1, . . . , r;α = δ = 1

ēp,j = αep,j +eq,j

ēq,j = −ep,j + δeq,j

}
for j = 1, . . . , r;β = γ = 1

(30)

4 The scaled Givens rotation
in the QR decomposition

Any non-singular matrix regular by columns
is eligible for the QR decomposition which
yields the product of the upper-triangle and or-
thogonal matrices

A = QR, (31)

where
QT Q = I, (32)

QT = Q−1, (33)

rij = 0 for i > j. (34)

Such process is called the Givens orthogonal-
ization [24]. As shown in the previous sections
for any vector a ∈ Rn and matrix A ∈ Rn,n,
there exists a sequence of the scaled Givens ro-
tations of a = Kd, and also A = KE, where
K = diag(√χl), which leads to ā = K̄d̄, Ā =
K̄Ē, where K̄ = diag(

√
χ̄l)

K2
11 = K2, K2

1,i−1 → K2
1,i

d1 = d, di−1 → di = F1id
E11 = E, E1,i−1 → E1,i = F1iE1,i−1

(35)
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for i = 2, . . . ,n we obtain

K̄2 = K2
1 = K2

1n

d̄ = dn =
∏n

i=2
F1id

Ē = E1,n =
∏n

i=2
F1iE

(36)

Since G1 is the product of the rotation matri-
ces, it performs multiple rotations at once so
the vector a is transformed into the following
form

ā = K̄d̄ = K1F1d = K1e1ρ = K1[ρ,0, . . . ,0]T ,

ρ = ±∥a∥2
(37)

where

F1 =
∏n

i=2
F1i = F12F13 . . .F1n (38)

The whole matrix is transformed by the scaled
rotations following the same pattern due to
equations (35) and (36). Let us consider a
non-singular matrix regular by columns given
as A ∈ Rm,n. The left-sided multiplication of
matrix

A = A1 = M1 =
[

a1 B1
]

(39)

by matrices K1 and F1 results in the following
pattern

A2 = K1F1M1 = K1
[

ā1 B̄1
]

=

= K1

[
ρ1
0

∣∣∣∣∣B̄1

]
= K1

[
r11 r12 · · ·r1n

0 M2

]

(40)
At this stage of the algorithm, the leftmost col-
umn of matrix A is reflected by equation (37).
Also the topmost row of matrix A is fully trans-
formed and will not participate in any calcula-
tions anymore. Next, the new sequences of the
scaled rotations are applied to the matrix ac-
cording to the following formula

KkFk = Kk

∏n

i=k+1
Fki =

= KkFk,k+1Fk,k+2 · · ·Fkn

(41)

Each consecutive transformation of matrix Mk

pushes the input matrix one step closer to the

final upper-triangle form depicted as

Ak+1 = KkFkMk = Kk

[
āk B̄k

]
=

= Kk

[
ρk

0

∣∣∣∣∣B̄k

]
= Kk

[
rkk rk,k+1 · · ·rk,n

0 Mk+1

]

(42)
The algorithm ends its transformation sequence
once it reaches n−1 iterations and yields a fully
transformed upper-triangle form

R = KnFn . . .F1A1 = QT A (43)

At this stage the full QR decomposition that
utilizes the scaled Givens rotations has been ac-
complished as given in equation (31).

5 The SGQR algorithm
Similar to the GQR, the SGQR algorithm is

able to train any multi-layered neural network
which uses any differentiable activation func-
tion. The primary target of the algorithm is to
minimize the error function given as

J (n) =
n∑

t=1
λn−t

NL∑
j=1

ε
(L)2
j (t) =

=
n∑

t=1
λn−t

NL∑
j=1

[
d

(L)
j (t)−f

(
x(L)T (t)w(L)

j (n)
)]2

(44)
The minimization process is based on the er-
ror backpropagation. In order to obtain the en-
try point to the SGQR algorithm, equation (44)
needs to be derived with respect to the weight
value. This can be depicted as

∂ J (n)
∂ w(l)

i (n)
= 2

n∑
t=1

λn−t
NL∑
j=1

∂ ε
(L)
j (t)

∂ w(l)
i (n)

ε
(L)
j (t) =

= −2
n∑

t=1
λn−t

NL∑
j=1

∂ y
(L)
j (t)

∂ w(l)
i (n)

ε
(L)
j (t) = 0

(45)
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Since G1 is the product of the rotation matri-
ces, it performs multiple rotations at once so
the vector a is transformed into the following
form

ā = K̄d̄ = K1F1d = K1e1ρ = K1[ρ,0, . . . ,0]T ,

ρ = ±∥a∥2
(37)

where

F1 =
∏n

i=2
F1i = F12F13 . . .F1n (38)

The whole matrix is transformed by the scaled
rotations following the same pattern due to
equations (35) and (36). Let us consider a
non-singular matrix regular by columns given
as A ∈ Rm,n. The left-sided multiplication of
matrix

A = A1 = M1 =
[

a1 B1
]

(39)

by matrices K1 and F1 results in the following
pattern

A2 = K1F1M1 = K1
[

ā1 B̄1
]

=

= K1

[
ρ1
0

∣∣∣∣∣B̄1

]
= K1

[
r11 r12 · · ·r1n

0 M2

]

(40)
At this stage of the algorithm, the leftmost col-
umn of matrix A is reflected by equation (37).
Also the topmost row of matrix A is fully trans-
formed and will not participate in any calcula-
tions anymore. Next, the new sequences of the
scaled rotations are applied to the matrix ac-
cording to the following formula

KkFk = Kk

∏n

i=k+1
Fki =

= KkFk,k+1Fk,k+2 · · ·Fkn

(41)

Each consecutive transformation of matrix Mk

pushes the input matrix one step closer to the

final upper-triangle form depicted as

Ak+1 = KkFkMk = Kk

[
āk B̄k

]
=

= Kk

[
ρk

0

∣∣∣∣∣B̄k

]
= Kk

[
rkk rk,k+1 · · ·rk,n

0 Mk+1

]

(42)
The algorithm ends its transformation sequence
once it reaches n−1 iterations and yields a fully
transformed upper-triangle form

R = KnFn . . .F1A1 = QT A (43)

At this stage the full QR decomposition that
utilizes the scaled Givens rotations has been ac-
complished as given in equation (31).

5 The SGQR algorithm
Similar to the GQR, the SGQR algorithm is

able to train any multi-layered neural network
which uses any differentiable activation func-
tion. The primary target of the algorithm is to
minimize the error function given as

J (n) =
n∑

t=1
λn−t

NL∑
j=1

ε
(L)2
j (t) =

=
n∑

t=1
λn−t

NL∑
j=1

[
d

(L)
j (t)−f

(
x(L)T (t)w(L)

j (n)
)]2

(44)
The minimization process is based on the er-
ror backpropagation. In order to obtain the en-
try point to the SGQR algorithm, equation (44)
needs to be derived with respect to the weight
value. This can be depicted as

∂ J (n)
∂ w(l)

i (n)
= 2

n∑
t=1

λn−t
NL∑
j=1

∂ ε
(L)
j (t)

∂ w(l)
i (n)

ε
(L)
j (t) =

= −2
n∑

t=1
λn−t

NL∑
j=1

∂ y
(L)
j (t)

∂ w(l)
i (n)

ε
(L)
j (t) = 0

(45)
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Let us solve equation (45)

n∑
t=1

λn−t
NL∑
j=1

∂ y
(L)
j (t)

∂ s
(L)
j (t)

NL−1∑
p=1

∂ s
(L)
t (t)

∂ y
(L−1)
p (t)

∂ y
(L−1)
p (t)

∂ w(l)
i (n)

ε
(L)
j (t) =

=
n∑

t=1
λn−t

NL−1∑
p=1

∂ y
(L−1)
p (t)

∂ w(l)
i (n)

NL∑
j=1

∂ y
(L)
j (t)

∂ s
(L)
j (t)

w
(L)
jp ε

(L)
j (t) =

=
n∑

t=1
λn−t

NL−1∑
p=1

∂ y
(L−1)
p (t)

∂ w(l)
i (n)

ε(L−1)
p (t) =

=
n∑

t=1
λn−t

Nl∑
q=1

∂ y
(l)
q (t)

∂ w(l)
i (n)

ε(l)
q (t) = 0

(46)
where ε

(l)
p (t) corresponds to the error of the p-

th neuron, which is given as

ε(l)
p (t) =

Nl+1∑
j=1

∂ y
(l+1)
j (t)

∂ s
(l+1)
j (t)

w
(l+1)
jp (n)ε(l+1)

j (t)

(47)
Next, we solve equation (46) as follows

n∑
t=1

λn−t
Nl∑

q=1

∂y
(l)
q (t)

∂w(l)
i (n)

ε(l)
q (t) =

=
n∑

t=1
λn−t

Nl∑
q=1

∂y
(l)
q (t)

∂s
(l)
q (n)

∂s
(l)
q (t)

∂w(l)
i (n)

ε(l)
q (t) =

=
n∑

t=1
λn−t ∂y

(l)
i (t)

∂s
(l)
i (n)

y(l−1)T (t)ε(l)
i (t) =

=
n∑

t=1
λn−t ∂y

(l)
i (t)

∂s
(l)
i (n)

y(l−1)T (t)
[
d

(l)
i (t)−y

(l)
i (t)

]
= 0

(48)
At this stage the activation function is lin-
earized

f
(
b

(l)
i (t)

)
≈ f

(
s

(l)
i (t)

)
+f ′

(
s

(l)
i (t)

)(
b

(l)
i (t)−s

(l)
i (t)

)

(49)
where

bi (n) = f−1 (di (n)) (50)

From (48) we obtain

n∑
t=1

λn−tf ′2
(
s

(l)
i (t)

)[
b

(l)
i (t)−x(l)T (t)w(l)

i (n)
]
x(l)T (t) = 0

(51)

which is the entry point of the SGQR algorithm.
Let us rephrase equation (51) into a matrix rep-
resentation. Then, we obtain the following

A(l)
i (n)w(l)

i (n) = h(l)
i (n) (52)

where

A(l)
i (n) =

n∑
t=1

λn−tz(l)
i (t)z(l)T

i (t) (53)

h(l)
i (n) =

n∑
t=1

λn−tf ′
(
s

(l)
i (t)

)
b

(l)
i (t)z(l)

i (t) (54)

and
z(l)

i (t) = f ′
(
s

(l)
i (t)

)
x(l) (t) (55)

b
(l)
i (n) =




f−1
(
d

(l)
i (n)

)

s
(l)
i (n)+ e

(l)
i (n)

for l = L
for l = 1 . . .L−1

(56)

e
(k)
i (n) =

Nk+1∑
j=1

f ′
(
s

(k)
i (n)

)
w

(k+1)
ji (n)e

(k+1)
j (n)

for k = 1 . . .L−1
(57)

From equation (51), it is known that the QR
decomposition is needed for each neuron of the
network due to its individual linear response
(s(l)

i ). The decomposition process is performed
by the scaled rotations discussed in the previous
sections. During the process the QT matrix is
not explicitly calculated because a single scaled
rotation only utilizes the α, β, γ and δ param-
eters

Q(l)T
i (n)A(l)

i (n)w(l)
i (n) = Q(l)T

i (n)h(l)
i (n)

(58)
R(l)

i (n)w(l)
i (n) = Q(l)T

i (n)h(l)
i (n) (59)

As the result of equation (59), we obtain the
upper-triangle matrix R(l)

i (n). Based on its
properties, the calculation of R(l)−1

i (n) can be
handled easily. The final weight update form of
the SGQR algorithm is as follows

ŵ(l)
i (n) = R(l)−1

i (n) Q(l)T
i (n) h(l)

i (n) (60)

w(l)
i (n) = (1−η)w(l)

i (n−1)+η ŵ(l)
i (n) (61)

The full weight update process in the SGQR
algorithm can be expressed by the following
pseudo code
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6 Experimental results
The scope of the experiment includes a re-

sults comparison between SGQR and several
reference methods in six benchmarks. Each
benchmark was retried for a set of various hy-
perparameters. Training for each configuration
was retried 100 times. The results were gath-
ered according to the highest value of the per-
formance factor given by the following equation

ξ = SR
Ep ·T

(62)

where SR stands for the success ratio, Ep stands
for the average epoch count, and T stands for
the average training time. Both, Ep and T were
gathered only from the successful trials.

In order to examine the SGQR algorithm
performance, each experiment also utilizes a set
of neural networks of various topologies. In
this paper, each benchmark is described by the
problem description, a set of initial values such
as the number of samples and the target er-
ror. The results are gathered in two tables of
different kind. The first table summarizes per-
formance of the SGQR algorithm for the given
benchmark. The second one summarizes the
performance comparison between SGQR and
the reference algorithms. Both tables include
the values of the hyperparameters for which the
presented result was given.

6.1 Hang function approximation
The Hang benchmark contains 50 samples,

each with 2 inputs and a single output. The
training is assumed to be successful if the aver-
age network error is reduced below the thresh-
old of 0.001 within a given epoch limit. Hang
is a non-linear two argument function that per-
forms the following mapping

f (x1,x2) =
(

1+ x−2
1 +

√
x−3

2

)2
(63)

where x1,x2 ∈ [1,5]. In Table 1 the Hang ex-
periment summary yield by the SGQR algo-
rithm is presented. The FCC networks react
better for the lower values of η than MLPs and
FCMLPs. The overall success ratio is high. In
Table 2, the SGQR results are compared with
the outcome of the reference methods in the
Hang benchmark. The SGQR algorithm mani-
fests the shortest average training time and the
highest success ratio.

h(l)
i (n) =

n∑
t=1

λn−tf ′
(
s

(l)
i (t)

)
b

(l)
i (t) z(l)

i (t)

(54)
and

z(l)
i (t) = f ′

(
s

(l)
i (t)

)
x(l) (t) (55)

b
(l)
i (n) =




f−1
(
d

(l)
i (n)

)

s
(l)
i (n) + e

(l)
i (n)

for l = L
for l = 1 . . . L − 1

(56)

e
(k)
i (n) =

Nk+1∑
j=1

f ′
(
s

(k)
i (n)

)
w

(k+1)
ji (n) e

(k+1)
j (n)

for k = 1 . . . L − 1
(57)

From equation (51), it is known that the QR de-
composition is needed for each neuron of the net-
work due to its individual linear response (s(l)

i ).
The decomposition process is performed by the
scaled rotations discussed in the previous sec-
tions. During the process the QT matrix is not
explicitly calculated because a single scaled ro-
tation only utilizes the α, β, γ and δ parameters

Q(l)T
i (n) A(l)

i (n) w(l)
i (n) = Q(l)T

i (n) h(l)
i (n)

(58)
R(l)

i (n) w(l)
i (n) = Q(l)T

i (n) h(l)
i (n) (59)

As the result of equation (59), we obtain the
upper-triangle matrix R(l)

i (n). Based on its
properties, the calculation of R(l)−1

i (n) can be
handled easily. The final weight update form of
the SGQR algorithm is as follows

ŵ(l)
i (n) = R(l)−1

i (n) Q(l)T
i (n) h(l)

i (n) (60)

w(l)
i (n) = (1 − η) w(l)

i (n − 1) + η ŵ(l)
i (n) (61)

The full weight update process in the SGQR
algorithm can be expressed by the following
pseudo code

Algorithm 1 The SGQR algorithm
while error criterion is not met do

for each sample n do
Perform network forward pass
Perform error backpropagation
Begin the SGQR algorithm:
for each layer l do

for each neuron i do
Compute equation (55)
Compute equation (53)
Compute equation (54)
Begin the QR decomposition:
for p ← 0 until Nl−1 do

for q ← p + 1 until Nl−1 + 1 do
if χpa2

pp � χqa2
qp then

Case 1 : δ ← α ← 1
Calculate γ due to (19)
Calculate β due to (20)

else
Case 2 : γ ← β ← 1
Calculate δ due to (25)
Calculate α due to (26)

end if
Rotate the A(l)

i (n) matrix as
per equations (41), (42), (43).

end for
end for
Compute equation (60)
Perform weight update as per equa-
tion (61).

end for
end for

end for
end while

6 Experimental results

The scope of the experiment includes a results
comparison between SGQR and several reference

9
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6 Experimental results
The scope of the experiment includes a re-

sults comparison between SGQR and several
reference methods in six benchmarks. Each
benchmark was retried for a set of various hy-
perparameters. Training for each configuration
was retried 100 times. The results were gath-
ered according to the highest value of the per-
formance factor given by the following equation

ξ = SR
Ep ·T

(62)

where SR stands for the success ratio, Ep stands
for the average epoch count, and T stands for
the average training time. Both, Ep and T were
gathered only from the successful trials.

In order to examine the SGQR algorithm
performance, each experiment also utilizes a set
of neural networks of various topologies. In
this paper, each benchmark is described by the
problem description, a set of initial values such
as the number of samples and the target er-
ror. The results are gathered in two tables of
different kind. The first table summarizes per-
formance of the SGQR algorithm for the given
benchmark. The second one summarizes the
performance comparison between SGQR and
the reference algorithms. Both tables include
the values of the hyperparameters for which the
presented result was given.

6.1 Hang function approximation
The Hang benchmark contains 50 samples,

each with 2 inputs and a single output. The
training is assumed to be successful if the aver-
age network error is reduced below the thresh-
old of 0.001 within a given epoch limit. Hang
is a non-linear two argument function that per-
forms the following mapping

f (x1,x2) =
(

1+ x−2
1 +

√
x−3

2

)2
(63)

where x1,x2 ∈ [1,5]. In Table 1 the Hang ex-
periment summary yield by the SGQR algo-
rithm is presented. The FCC networks react
better for the lower values of η than MLPs and
FCMLPs. The overall success ratio is high. In
Table 2, the SGQR results are compared with
the outcome of the reference methods in the
Hang benchmark. The SGQR algorithm mani-
fests the shortest average training time and the
highest success ratio.
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Table 1. Summary of the Hang experiment
conducted with the use of the SGQR

algorithm.

Network η λ SR Ep. T
FCC-8 0.09 0.994 81 46.53 11.20
FCC-10 0.007 0.991 90 41.41 16.23
FCC-12 0.003 0.989 91 34.25 20.09
FCC-14 0.003 0.99 91 30.97 27.22
FCC-16 0.001 0.956 91 27.90 33.72
FCC-18 0.001 0.959 92 25.82 45.31
MLP-5-1 0.09 0.959 55 57.38 4.50
MLP-10-1 0.03 0.975 100 29.73 4.65
MLP-15-1 0.03 0.964 100 23.92 6.18
MLP-4-4-1 0.05 0.983 67 74.34 10.67
MLP-6-6-1 0.03 0.978 99 36.67 10.49
MLP-8-8-1 0.05 0.983 99 28.43 13.88
FCMLP-5-1 0.07 0.979 90 75.19 6.72
FCMLP-10-1 0.03 0.979 100 27.91 5.76
FCMLP-15-1 0.03 0.969 100 24.45 7.08
FCMLP-4-4-1 0.03 0.986 94 40.54 9.11
FCMLP-6-6-1 0.05 0.99 100 30.97 14.80
FCMLP-8-8-1 0.05 0.984 95 28.29 23.37

Table 2. Summary of the Hang experiment
using the FCMLP-6-6-1 network.

Alg. η λ α inc dec SR Ep. T
Adam 0.01 - - - - 51 320.67 64.24
BP 0.03 - - - - 66 487.59 73.30
GQR 0.1 0.985 - - - 93 31.39 20.19
MBP 0.001 - 0.95 - - 90 378.28 57.88
NAG 0.009 - 0.65 - - 44 486.05 126.12
QProp 0.57 - - - - 13 601.23 88.95
RProp - - - 1.1 0.65 46 696.72 93.35
SGQR 0.05 0.99 - - - 100 30.97 14.80

6.2 Sinc function approximation
The Sinc benchmark contains 120 samples,

each with 2 inputs and a single output. This
benchmark utilizes the same setup as Hang ex-
cept the target error threshold, which, in this
case, equals 0.005. Sinc is a non-linear two ar-
gument composite sin function that can be ex-
pressed as

f (x1,x2) =




1 for x1 = x2 = 0
sinx2

x2
for x1 = 0∧x2 ̸= 0

sinx1
x1

for x2 = 0∧x1 ̸= 0
sinx1

x1
sinx2

x2
for other cases

(64)

where x1,x2 ∈ [−10,10]. In Table 3 the Sinc ex-
periment summary obtained with the use of the
SGQR algorithm is presented. One can observe
that the SGQR algorithm performs better for
networks that contain more than 10 neurons,
excluding FCCs. The overall success ratio is
high.

Table 3. Summary of the Sinc experiment
done by the SGQR algorithm.

Network η λ SR Ep. T
FCC-8 0.03 0.955 100 10.37 5.73
FCC-10 0.03 0.966 100 6.99 6.27
FCC-12 0.03 0.969 100 5.75 7.81
FCC-14 0.01 0.951 100 5.01 9.72
FCC-16 0.01 0.962 100 4.63 12.68
FCC-18 0.01 0.962 100 4.28 15.97
MLP-5-1 0.09 0.954 48 267.71 52.12
MLP-10-1 0.03 0.961 96 292.81 111.34
MLP-15-1 0.01 0.983 100 131.52 85.74
MLP-4-4-1 0.03 0.955 100 52.81 18.32
MLP-6-6-1 0.03 0.954 100 26.47 17.53
MLP-8-8-1 0.01 0.959 100 15.65 18.88
FCMLP-5-1 0.09 0.966 37 267.54 57.75
FCMLP-10-1 0.03 0.971 99 270.05 119.34
FCMLP-15-1 0.01 0.968 100 102.10 77.77
FCMLP-4-4-1 0.03 0.965 100 14.02 7.26
FCMLP-6-6-1 0.03 0.953 100 7.94 9.02
FCMLP-8-8-1 0.01 0.964 100 5.69 11.37

In Table 4 the SGQR results are compared
with the outcome of the reference methods in
the Sinc benchmark. The SGQR algorithm
manifests the shortest average training time.

Table 4. Summary of the Sinc experiment
using the FCMLP-2-4-4-1 network.

Alg. η λ α inc dec SR Ep. T
Adam 0.01 - - - - 100 52.20 16.40
BP 0.01 - - - - 100 393.82 74.39
GQR 0.05 0.965 - - - 100 14.10 11.53
MBP 0.0009 - 0.95 - - 100 256.87 45.68
NAG 0.0009 - 0.95 - - 86 285.01 109.69
QProp 0.93 - - - - 76 254.05 50.15
RProp - - - 1.05 0.8 94 324.79 51.97
SGQR 0.03 0.965 - - - 100 14.02 7.26
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6.3 The Concrete training set
The Concrete benchmark contains 1030

samples, each with 8 inputs and a single output.
In this experiment neural networks are trained
to assess the concrete compressive strength
based on a given age and ingredients. The
training is assumed to be successful if the aver-
age network error is reduced below the thresh-
old of 0.01 within a given epoch limit. Con-
trary to the Hang and Sinc benchmarks, in this
case all samples have been normalized to [−1,1]
to work better with the arc tangent activation
function. In Table 5 the Concrete experiment
summary obtained with the use of the SGQR
algorithm is presented. The overall success ra-
tio is high excluding the smallest of the tested
MLP networks, where the success ratio dropped
to 50%. In Table 6 the SGQR results are com-
pared with the outcome of the reference meth-
ods in the Concrete benchmark. The SGQR
algorithm manifests the shortest average train-
ing time. The average epoch count is similar as
in the GQR algorithm.

Table 5. Summary of the Concrete
experiment done by the SGQR algorithm.

Network η λ SR Ep. T
FCC-7 0.005 0.98 100 41.09 475.46
FCC-8 0.007 0.99 100 29.20 425.92
FCC-9 0.007 0.99 99 22.89 415.59
MLP-4-4-1 0.01 0.98 50 113.98 735.18
MLP-6-6-1 0.01 0.96 100 32.90 342.48
MLP-8-8-1 0.01 0.98 100 19.68 320.73
FCMLP-4-4-1 0.01 0.98 100 27.67 436.52
FCMLP-6-6-1 0.005 0.99 100 17.30 472.42
FCMLP-8-8-1 0.009 0.99 100 14.11 665.59

Table 6. Summary of the Concrete
experiment using the FCMLP-8-6-6-1 network.

Alg. η λ α inc dec SR Ep. T
Adam 0.001 - - - - 100 104.33 556.75
BP 0.03 - - - - 100 192.81 563.41
GQR 0.009 0.99 - - - 100 17.26 575.92
MBP 0.01 - 0.6 - - 100 172.68 532.33
NAG 0.005 - 0.85 - - 90 335.89 2181.26
QProp 0.09 - - - - 18 834.78 2170.56
RProp - - - 1.2 0.5 46 729.17 1860.38
SGQR 0.005 0.99 - - - 100 17.30 472.42

6.4 The Abalone training set
The Abalone benchmark contains 4177 sam-

ples, each with 8 inputs and a single output. In
this experiment neural networks are trained to
detect the age of the sea creature called abalone
based on its physical properties. The training
is assumed to be successful if the average net-
work error is reduced below the threshold of
0.012 within a given epoch limit. Again, all
samples have been normalized to [−1,1] in the
same manner as in the Concrete benchmark.

In Table 7 the Abalone experiment sum-
mary yield by the SGQR algorithm is presented.
In all benchmarks only 2 trials have failed dur-
ing the MLP-2-2-1 network training. In Table
8 the SGQR results are compared with the out-
come of the reference methods in the Abalone
benchmark. The SGQR algorithm manifests
similar performance as Adam in terms of the
training time.

Table 7. Summary of the Abalone experiment
done by the SGQR algorithm.

Network η λ SR Ep. T
FCC-3 0.001 0.99 100 14.92 231.84
FCC-4 0.003 0.99 100 8.44 184.48
FCC-5 0.0007 0.99 100 6.70 175.77
MLP-2-2-1 0.03 0.99 98 6.40 79.91
MLP-4-4-1 0.007 0.98 100 3.62 85.75
MLP-6-6-1 0.005 0.99 100 3.16 132.87
FCMLP-2-2-1 0.001 0.99 100 7.62 212.02
FCMLP-4-4-1 0.0009 0.99 100 4.34 287.96
FCMLP-6-6-1 0.001 0.99 100 4.07 431.36

Table 8. Summary of the Abalone experiment
using the MLP-8-6-6-1 network.

Alg. η λ α inc dec SR Ep. T
Adam 0.001 - - - - 100 9.73 138.83
BP 0.03 - - - - 100 18.04 152.39
GQR 0.003 0.99 - - - 100 3.01 157.45
MBP 0.003 - 0.9 - - 100 17.69 188.82
NAG 0.009 - 0.8 - - 100 16.97 367.13
QProp 0.1 - - - - 99 99.36 956.95
RProp - - - 1.65 0.4 100 76.87 536.13
SGQR 0.005 0.99 - - - 100 3.16 132.87

6.5 The Iris training set
The Iris benchmark contains 150 samples,

each with 4 inputs and 3 outputs. In this exper-
iment neural networks are trained to distinguish
the exact iris type. The training is assumed to
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6.3 The Concrete training set
The Concrete benchmark contains 1030

samples, each with 8 inputs and a single output.
In this experiment neural networks are trained
to assess the concrete compressive strength
based on a given age and ingredients. The
training is assumed to be successful if the aver-
age network error is reduced below the thresh-
old of 0.01 within a given epoch limit. Con-
trary to the Hang and Sinc benchmarks, in this
case all samples have been normalized to [−1,1]
to work better with the arc tangent activation
function. In Table 5 the Concrete experiment
summary obtained with the use of the SGQR
algorithm is presented. The overall success ra-
tio is high excluding the smallest of the tested
MLP networks, where the success ratio dropped
to 50%. In Table 6 the SGQR results are com-
pared with the outcome of the reference meth-
ods in the Concrete benchmark. The SGQR
algorithm manifests the shortest average train-
ing time. The average epoch count is similar as
in the GQR algorithm.

Table 5. Summary of the Concrete
experiment done by the SGQR algorithm.

Network η λ SR Ep. T
FCC-7 0.005 0.98 100 41.09 475.46
FCC-8 0.007 0.99 100 29.20 425.92
FCC-9 0.007 0.99 99 22.89 415.59
MLP-4-4-1 0.01 0.98 50 113.98 735.18
MLP-6-6-1 0.01 0.96 100 32.90 342.48
MLP-8-8-1 0.01 0.98 100 19.68 320.73
FCMLP-4-4-1 0.01 0.98 100 27.67 436.52
FCMLP-6-6-1 0.005 0.99 100 17.30 472.42
FCMLP-8-8-1 0.009 0.99 100 14.11 665.59

Table 6. Summary of the Concrete
experiment using the FCMLP-8-6-6-1 network.

Alg. η λ α inc dec SR Ep. T
Adam 0.001 - - - - 100 104.33 556.75
BP 0.03 - - - - 100 192.81 563.41
GQR 0.009 0.99 - - - 100 17.26 575.92
MBP 0.01 - 0.6 - - 100 172.68 532.33
NAG 0.005 - 0.85 - - 90 335.89 2181.26
QProp 0.09 - - - - 18 834.78 2170.56
RProp - - - 1.2 0.5 46 729.17 1860.38
SGQR 0.005 0.99 - - - 100 17.30 472.42

6.4 The Abalone training set
The Abalone benchmark contains 4177 sam-

ples, each with 8 inputs and a single output. In
this experiment neural networks are trained to
detect the age of the sea creature called abalone
based on its physical properties. The training
is assumed to be successful if the average net-
work error is reduced below the threshold of
0.012 within a given epoch limit. Again, all
samples have been normalized to [−1,1] in the
same manner as in the Concrete benchmark.

In Table 7 the Abalone experiment sum-
mary yield by the SGQR algorithm is presented.
In all benchmarks only 2 trials have failed dur-
ing the MLP-2-2-1 network training. In Table
8 the SGQR results are compared with the out-
come of the reference methods in the Abalone
benchmark. The SGQR algorithm manifests
similar performance as Adam in terms of the
training time.

Table 7. Summary of the Abalone experiment
done by the SGQR algorithm.

Network η λ SR Ep. T
FCC-3 0.001 0.99 100 14.92 231.84
FCC-4 0.003 0.99 100 8.44 184.48
FCC-5 0.0007 0.99 100 6.70 175.77
MLP-2-2-1 0.03 0.99 98 6.40 79.91
MLP-4-4-1 0.007 0.98 100 3.62 85.75
MLP-6-6-1 0.005 0.99 100 3.16 132.87
FCMLP-2-2-1 0.001 0.99 100 7.62 212.02
FCMLP-4-4-1 0.0009 0.99 100 4.34 287.96
FCMLP-6-6-1 0.001 0.99 100 4.07 431.36

Table 8. Summary of the Abalone experiment
using the MLP-8-6-6-1 network.

Alg. η λ α inc dec SR Ep. T
Adam 0.001 - - - - 100 9.73 138.83
BP 0.03 - - - - 100 18.04 152.39
GQR 0.003 0.99 - - - 100 3.01 157.45
MBP 0.003 - 0.9 - - 100 17.69 188.82
NAG 0.009 - 0.8 - - 100 16.97 367.13
QProp 0.1 - - - - 99 99.36 956.95
RProp - - - 1.65 0.4 100 76.87 536.13
SGQR 0.005 0.99 - - - 100 3.16 132.87

6.5 The Iris training set
The Iris benchmark contains 150 samples,

each with 4 inputs and 3 outputs. In this exper-
iment neural networks are trained to distinguish
the exact iris type. The training is assumed to
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be successful if the average network error is re-
duced below the threshold of 0.05 within a given
epoch limit. Similar as in previous classification
benchmarks, in this case all samples have also
been normalized to [−1,1].

In Table 9 the Iris experiment summary
yield by the SGQR algorithm is presented. One
can observe higher values of the success ratio
for FCMLP networks. In Table 10 the SGQR
results are compared with the outcome of the
reference methods in the Iris benchmark. In
this case, the SGQR algorithm still manifests
the shortest convergence time but the success
ratio is slightly lower than for the reference al-
gorithms.

Table 9. Summary of the Iris experiment
done by the SGQR algorithm.

Network η λ SR Ep. T
MLP-2-2-3 0.05 0.97 38 12.63 3.26
MLP-4-4-3 0.03 0.97 86 15.85 8.80
MLP-6-6-3 0.03 0.97 94 13.59 14.94
FCMLP-2-2-3 0.009 0.97 86 23.95 16.20
FCMLP-4-4-3 0.03 0.99 100 19.67 36.27
FCMLP-6-6-3 0.07 0.98 98 17.05 55.01

Table 10. Summary of the Iris experiment
using the FCMLP-4-2-2-3 network.

Alg. η λ α inc dec SR Ep. T
Adam 0.01 - - - - 98 114.11 32.19
BP 0.07 - - - - 93 136.00 23.63
GQR 0.1 0.99 - - - 95 26.31 23.34
MBP 0.03 - 0.3 - - 99 125.99 19.65
NAG 0.009 - 0.9 - - 94 178.47 75.48
QProp 0.51 - - - - 69 431.52 63.97
RProp - - - 1.2 0.6 76 425.67 63.75
SGQR 0.009 0.97 - - - 86 23.95 16.20

6.6 The Two Spirals classification
The Two Spirals benchmark contains 96 sam-
ples, each with 2 inputs and a single output.
In this experiment neural networks are trained
to properly distinguish the given points. Each
point can belong to the upper or the lower spi-
ral. Similar to the previous benchmarks, also in
this case the training set has been normalized
to work with the arc tangent activation func-
tion. The training is assumed to be successful if
the average network error is reduced below the
threshold of 0.05 within a given epoch limit.

In Table 11 the Two Spirals experiment
summary yield by the SGQR algorithm is pre-
sented. The highest values of the success ratio
can be observed for the FCMLP networks. In
Table 12 the SGQR results are compared with
the outcome of the reference methods in the
Two Spirals benchmark. The SGQR algorithm
manifests a much shorter convergence time than
the reference methods while maintaining a very
high value of the success ratio.

Table 11. Summary of the Spirals experiment
done by the SGQR algorithm.

Network η λ SR Ep. T
FCC-8 0.009 0.987 79 46.29 22.83
FCC-10 0.03 0.994 91 32.86 25.85
FCC-12 0.01 0.988 84 24.24 27.96
FCC-14 0.007 0.986 87 23.36 38.12
FCC-16 0.005 0.981 85 21.35 49.59
FCC-18 0.003 0.972 82 20.70 63.36
MLP-6-6-1 0.003 0.998 57 462.81 276.74
MLP-8-8-1 0.003 0.995 89 251.57 231.01
MLP-5-5-5-1 0.05 0.991 1 56.00 34.39
FCMLP-6-6-1 0.009 0.983 98 54.43 49.64
FCMLP-8-8-1 0.01 0.973 99 39.61 61.85
FCMLP-5-5-5-1 0.01 0.985 98 24.11 44.24

Table 12. Summary of the Spirals experiment
using the FCMLP-2-6-6-1 network.

Alg. η λ α inc dec SR Ep. T
Adam 0.001 - - - - 13 906.92 315.64
BP 0.007 - - - - 13 833.69 234.94
GQR 0.009 0.98 - - - 97 57.27 84.79
MBP 0.003 - 0.65 - - 26 828.92 250.00
NAG 0.005 - 0.75 - - 11 737.09 353.45
QProp 0.001 - - - - 8 720.62 188.29
RProp - - - 1.1 0.7 19 695.47 164.82
SGQR 0.009 0.983 - - - 98 54.43 49.64

6.7 The MNIST training set
The MNIST training set contains 60000

handwritten digits. Each image presents a sin-
gle digit of size 28×28 pixels with values rang-
ing from 0 to 255. Next to the training samples,
MNIST is shipped with a set of 10000 test im-
ages. Each digit is placed in the center of the
image and painted in black as shown in Fig-
ure 2. In the MNIST benchmark, each digit has
been downscaled from its original size to 7 × 7
pixels. Due to that, the network’s input was re-
duced from 784 + bias to 49 + bias while digits
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are still readable. All images have also been
normalized to match the hyperbolic tangent
activation function range so each pixel value
ranges in [−1,1]. During the benchmark, the
MLP-49-32-10 network has been used. The per-
centage of positive digits recognition is shown
in Table 13.

Figure 2. The first 80 images of each class in
the MNIST handwritten digits dataset.

Table 13. The MNIST benchmark results
after 5 epochs of training.

Alg. Training set Test set MSE
BP 91.41% 91.96% 0.255299
MBP 89.91% 90.52% 0.330019
NAG 89.77% 90.91% 0.333845
ADAM 92.33% 93.54% 0.216871
SGQR 92.08% 92.58% 0.254467

The SGQR algorithm compared to the refer-
ence algorithms is burdened with a much higher
computational load due to multiple matrix con-
versions. To speed up computation some sub-
set of best-trained samples (for which MSE was
small enough) was skipped in each epoch. The
SGQR performance in the MNIST benchmark
is superior compared to the classic training al-
gorithms such as BP, MBP and NAG.

7 Conclusion
The Givens rotations are a very fast and

convenient method that can be utilized in a
QR decomposition. According to equation (7),
in the classic approach the square roots are
calculated in order to get the ρ value. This,
needless to say, generates additional overhead
that should be avoided in neural networks train-
ing algorithms. The scaled rotations utilized
in the novel SGQR algorithm help to mitigate
this overhead. Moreover, the scaled rotations
in the QR decomposition are performed in the
same scheme as the classic rotations. This
opens an opportunity to develop a parallel vari-
ant of the SGQR algorithm as attempted in
[5, 8, 9, 11, 10, 12].

The paper contains a full mathematical
background for the classic and the scaled Givens
rotations and their application in the QR de-
composition. All of that put together yields the
SGQR algorithm, which manifests a great per-
formance when compared with its ancestor —
GQR, and other reference methods. The SGQR
algorithm has been tested for 6 benchmarks in-
cluding approximation, regression and classifi-
cation problems utilizing 3 types of neural net-
works topologies such as fully connected cas-
cade networks, multilayered perceptrons with
and without additional connections.

In the majority of the benchmarks, the
SGQR algorithm required almost the same
number of epochs as GQR in order to establish
the same error threshold. While the overall suc-
cess ratio for both methods is similar, the train-
ing time is shorter for the SGQR algorithm. It
is caused by the nature of the scaled rotations
that are utilized in SGQR. In SGQR, the square
root from equation (7) is no longer calculated,
which brings about a significant time boost to
the algorithm. The most important points cov-
ered in this paper are as follows:

1. The SGQR algorithm is slightly more com-
plex in implementation than the classic
GQR.

2. The proposed method inherits several prop-
erties from the GQR algorithm, such as a
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calculated in order to get the ρ value. This,
needless to say, generates additional overhead
that should be avoided in neural networks train-
ing algorithms. The scaled rotations utilized
in the novel SGQR algorithm help to mitigate
this overhead. Moreover, the scaled rotations
in the QR decomposition are performed in the
same scheme as the classic rotations. This
opens an opportunity to develop a parallel vari-
ant of the SGQR algorithm as attempted in
[5, 8, 9, 11, 10, 12].

The paper contains a full mathematical
background for the classic and the scaled Givens
rotations and their application in the QR de-
composition. All of that put together yields the
SGQR algorithm, which manifests a great per-
formance when compared with its ancestor —
GQR, and other reference methods. The SGQR
algorithm has been tested for 6 benchmarks in-
cluding approximation, regression and classifi-
cation problems utilizing 3 types of neural net-
works topologies such as fully connected cas-
cade networks, multilayered perceptrons with
and without additional connections.

In the majority of the benchmarks, the
SGQR algorithm required almost the same
number of epochs as GQR in order to establish
the same error threshold. While the overall suc-
cess ratio for both methods is similar, the train-
ing time is shorter for the SGQR algorithm. It
is caused by the nature of the scaled rotations
that are utilized in SGQR. In SGQR, the square
root from equation (7) is no longer calculated,
which brings about a significant time boost to
the algorithm. The most important points cov-
ered in this paper are as follows:

1. The SGQR algorithm is slightly more com-
plex in implementation than the classic
GQR.

2. The proposed method inherits several prop-
erties from the GQR algorithm, such as a
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huge parallelization potential and set of hy-
perparameters.

3. The success ratio of the conducted experi-
ments is satisfactory.

4. Both algorithms, GQR and SGQR, require a
similar number of epochs in order to estab-
lish a given error threshold, but the SGQR
convergence time is shorter due to the elimi-
nation of the square root calculation and re-
ducing the number of multiplications.
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huge parallelization potential and set of hy-
perparameters.

3. The success ratio of the conducted experi-
ments is satisfactory.

4. Both algorithms, GQR and SGQR, require a
similar number of epochs in order to estab-
lish a given error threshold, but the SGQR
convergence time is shorter due to the elimi-
nation of the square root calculation and re-
ducing the number of multiplications.
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