PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laser alloying of 316L steel with boron and nickel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the study was to improve the hardness and tribological properties of austenitic 316L steel by laser alloying with boron and nickel. Design/methodology/approach: The relatively low wear resistance of austenitic 316L steel could be improved by an adequate surface treatment. Laser alloying was developed as an alternative for time- and energy-consuming thermo-chemical treatment, e.g. diffusion boriding. In the present study, laser alloying of 316L steel with boron and nickel was carried out as the two-stage process. Firstly, the outer surface of the sample was coated with the paste, consisting of the mixture of boron and nickel powders, blended with a diluted polyvinyl alcohol solution. Second stage consisted in laser re-melting of the paste coating together with the base material. Laser treatment was carried out with the use of the TRUMPF TLF 2600 Turbo CO2 laser. The multiple laser tracks were formed on the surface. The microstructure was observed with the use of an optical microscope (OM) and scanning electron microscope (SEM) Tescan Vega 5135. The phase analysis was carried out by PANalytical EMPYREAN X-ray diffractometer using Cu Ka radiation. Hardness profile was determined along the axis of laser track. Wear resistance was studied using MBT-01 tester. Findings: The use of the adequate laser processing parameters (laser beam power, scanning rate, overlapping) caused that free of cracks and gas pores and the uniform laseralloyed layer in respect of the thickness was produced. In the microstructure, only two zones were observed: laser re-melted zone (MZ) and the substrate. There were no effects of heat treatment below MZ. Heat-affected zone (HAZ) was invisible because the austenitic steel could not be hardened by typical heat treatment (austenitizing and quenching). The produced laser-alloyed layer was characterized by improved hardness and wear resistance compared to the base material. Research limitations/implications: The application of proposed surface treatment in industry will require the appropriate corrosion resistance. In the future research, the corrosion behaviour of the produced layer should be examined and compared to the behaviour of 316L steel without surface layer. Practical implications: The proposed layer could be applied in order to improve the hardness and tribological properties of austenitic steels. Originality/value: This work is related to the new conception of surface treatment of austenitic steels, consisting in laser alloying with boron and some metallic elements.
Rocznik
Strony
32--40
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Institute of Materials Science and Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie 5, 60-965 Poznań, Poland
autor
  • Institute of Materials Science and Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie 5, 60-965 Poznań, Poland
autor
  • Institute of Materials Science and Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie 5, 60-965 Poznań, Poland
autor
  • Institute of Materials Science and Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie 5, 60-965 Poznań, Poland
Bibliografia
  • [1] W.A. Glaeser (Ed.), Materials for Tribology, Tribology Series, Vol. 20, Elsevier, 1992.
  • [2] E. Skołek-Stefaniszyn, J. Kaminski, J. Sobczak, T. Wierzchoń, Modifying the properties of AISI 316L steel by glow discharge assisted low-temperature nitriding and oxynitriding, Vacuum 85 (2010) 164-169.
  • [3] E. Skołek-Stefaniszyn, S. Burdynska, W. Mroz, T. Wierzchoń, Structure and wear resistance of the composite layers produced by glow discharge nitriding and PLD method on AISI 316L austenitic stainless steel, Vacuum 83 (2009) 1442-1447.
  • [4] Y. Li, Z. Wang, L. Wang, Surface properties of nitride layer on AISI 316L austenitic stainless steel produced by high temperature plasma nitriding in short time, Applied Surface Science 298 (2014) 243-250.
  • [5] T. Frączek, M. Olejnik, J. Jasiński, Z. Skuza, Short-term low-temperature glow discharge nitriding of 361L austenitic steel, Metalurgija 50/3 (2011) 151-154.
  • [6] Y. Sun, X. Li, T. Bell, Structural characteristics of low temperature plasma carburized austenitic stainless steel, Materials Science and Technology 15 (1999) 1171-1178.
  • [7] J. García Molleja, L. Nosei, J. Ferrón, E. Bemporad, J. Lesage, D. Chicot, J. Feugeas, Characterization of expanded austenite developed on AISI 316L stainless steel by plasma carburization, Surface and Coatings Technology 204 (2010) 3750-3759.
  • [8] L. Ceschini, C. Chiavari, E. Lanzoni, C. Martini, Low-temperature carburized AISI 316L austenitic stainless steel: Wear and corrosion behavior, Materials and Design 38 (2012) 154-160.
  • [9] Y. Sun, Tribocorrosion behavior of low temperature plasma carburized stainless steel, Surface and Coatings Technology 228 (2013) S342-S348.
  • [10] O. Ozdemir, M.A. Omar, M. Usta, S. Zeytin, C. Bindal, A.H. Ucisik, An investigation on boriding kinetics of AISI 316 stainless steel, Vacuum 83 (2009) 175-179.
  • [11] Y. Kayali, A. Büyüksagis, I. Günes, Y. Yalçin, Investigation of corrosion behaviors at different solutions of boronized AISI 316L stainless steel, Protection of Metals and Physical Chemistry of Surfaces 49/3 (2013) 348-358.
  • [12] Y. Kayali, A. Büyüksagis, Y. Yalçin, Corrosion and Wear Behaviors of Boronized AISI 316L Stainless Steel, Metals and Materials International 19/5 (2013) 1053-1061.
  • [13] C.H. Hsu, K.H. Huang, M.R. Lin, Annealing effect on tribological property of arc-deposited TiN film on 316L austenitic stainless steel, Surface and Coatings Technology 229 (2014) 167-171.
  • [14] L. Zhang, H. Yang, X. Pang, K. Gao, H.T. Tran, A.A. Volinsky, TiN-coating effects on stainless steel tribological behavior under dry and lubricated conditions, Journal of Materials Engineering and Performance 23/4 (2014) 1263-1269.
  • [15] B. Major, Chapter 7: Laser processing for surface modification by remelting and alloying of metallic systems, in: Materials Surface Processing by Directed Energy Techniques, Y. Paleau (Ed.), Elsevier, 2006.
  • [16] M. Goły, J. Kusiński, Microstructure and properties of the laser treated 30CrMnMo16-8 chromium steel, in: Problems of modern techniques in aspect of engineering and education, P. Kurtyka, et al. (Eds.), Monograpphy, Pedagogical University Cracow Publishing House, Kraków, 2006, 183-188.
  • [17] M. Kulka, N. Makuch, A. Pertek, Microstructure and properties of laser-borided 41Cr4 steel, Optics and Laser Technology 45 (2013) 308-318.
  • [18] M. Paczkowska, W. Ratuszek, W. Waligora, Microstructure of laser boronized nodul ar iron, Surface and Coatings Technology 205 (2010) 2542-2545.
  • [19] R. Filip, J. Sieniawski, E. Pleszakov, Formation of surface layers on Ti-6Al-4V titanium alloy by laser alloying, Surface Engineering 22/1 (2006) 53-57.
  • [20] C. Guo, J. Zhou, J. Zhao, B. Guo, Y. Yu, H. Zhou, J. Chen, Microstructure and friction and wear behavior of laser boronizing composite coatings on titanium substrate, Applied Surface Science 257 (2011) 4398-4405.
  • [21] M. Kulka, N. Makuch, P. Dziarski, A. Piasecki, A. Miklaszewski, Microstructure and properties of laser-borided composite layers formed on commercially pure titanium, Optics and Laser Technology 56 (2014) 409-424.
  • [22] ] M. Kulka, P. Dziarski, N. Makuch, A. Piasecki, A. Miklaszewski, Microstructure and properties of laser-borided Inconel 600-alloy, Applied Surface Science 284 (2013) 757-771.
  • [23] ] M. Kulka, N. Makuch, P. Dziarski, A. Piasecki, A study of nanoindentation for mechanical characterization of chromium and nickel borides’ mixtures formed by laser boriding, Ceramics International 40/4 (2014) 6083-6094.
  • [24] T.H. Kim, B.C. Kim, Chromium carbide laser-beam surface-alloying treatment on stainless steel, Journal of Materials Science 27 (1992) 2967-2973.
  • [25] C. Tassin, F. Laroudie, M. Pons, L. Lelait, Improvement of the wear resistance of 316L stainless steel by laser surface alloying, Surface and Coatings Technology 80 (1996) 207-210.
  • [26] C.T. Kwok, F.T. Cheng, H.C. Man, Laser-fabricated Fe-Ni-Co-Cr-B austenitic alloy on steels. Part I. Microstructures and cavitation erosion behavior, Surface and Coatings Technology 145 (2001) 194-205.
  • [27] C.T. Kwok, F.T. Cheng, H.C. Man, Laser surface modification of UNS S31603 stainless steel using NiCrSiB alloy for enhancing cavitation erosion resistance, Surface and Coatings Technology 107 (1998) 31-40.
  • [28] M. Kulka, D. Mikołajczak, N. Makuch, P. Dziarski, Laser alloying of 316L steel with boron, Materials Engineering 35/6 (2014) 512-515.
  • [29] M. Kulka, D. Mikołajczak, N. Makuch, P. Dziarski, A. Miklaszewski, Wear resistance improvement of austenitic 316L steel by laser alloying with boron, Surface and Coatings Technology 291 (2016) 292-313.
  • [30] C.T. Kwok, H.C. Man, F.T. Cheng, Cavitation erosion-corrosion behavior of laser surface alloyed AISI 1050 mild steel using NiCrSiB, Materials Science and Engineering A303 (2001) 250-261.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a393599-14a2-4c70-92ae-ac86e025107c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.