Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
Abstrakty
The electronic quasi-bound state in the continuum concept is explored in an InGaAs/InAlAs heterostructure to create a voltage-tunable dual-colour quantum Bragg mirror detector. This heterostructure is based on one main quantum well embedded between two different superlattices. By bandgap engineering, each superlattice gives rise to quasi-bound states in the continuum with a preferential direction for electron extraction. Due to these states, the photovoltaic photocurrent presents a dual-colour response, one in a positive direction at 340 meV (3.6 µm), and one in a negative direction at 430 meV (2.9 µm). The simultaneous dual-colour detection can be switched to a single-colour detection (340 meV or 430 meV) by applying a bias voltage. At 77 K, the specific detectivity for simultaneous dual-colour is 2.5·10⁸ Jones, while the single-colour detectivities are 2.6·10⁹ Jones at +2.0 V and 7.7·10⁸ Jones at -1.6 V for 340 meV and 430 meV, respectively.
Wydawca
Czasopismo
Rocznik
Strony
art. no. e144559
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
- Instituto de Física, Universidade Federal do Rio de Janeiro, R. Athos Silveira Ramos 149, Rio de Janeiro 21941-909, Brasil
- DISSE, Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semiconductores, R. Marquês de São Vicente 225, Gávea, Rio de Janeiro, 22451-900, Brasil
autor
- LabSem/CETUC, Pontifícia Universidade Católica do Rio de Janeiro, R. Marquês de São Vicente 124, Gávea, Rio de Janeiro 22451-040, Brasil
- DISSE, Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semiconductores, R. Marquês de São Vicente 225, Gávea, Rio de Janeiro, 22451-900, Brasil
autor
- LabSem/CETUC, Pontifícia Universidade Católica do Rio de Janeiro, R. Marquês de São Vicente 124, Gávea, Rio de Janeiro 22451-040, Brasil
- DISSE, Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semiconductores, R. Marquês de São Vicente 225, Gávea, Rio de Janeiro, 22451-900, Brasil
autor
- LabSem/CETUC, Pontifícia Universidade Católica do Rio de Janeiro, R. Marquês de São Vicente 124, Gávea, Rio de Janeiro 22451-040, Brasil
- DISSE, Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semiconductores, R. Marquês de São Vicente 225, Gávea, Rio de Janeiro, 22451-900, Brasil
autor
- Instituto de Física, Universidade Federal do Rio de Janeiro, R. Athos Silveira Ramos 149, Rio de Janeiro 21941-909, Brasil
- DISSE, Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semiconductores, R. Marquês de São Vicente 225, Gávea, Rio de Janeiro, 22451-900, Brasil
autor
- LabSem/CETUC, Pontifícia Universidade Católica do Rio de Janeiro, R. Marquês de São Vicente 124, Gávea, Rio de Janeiro 22451-040, Brasil
- DISSE, Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semiconductores, R. Marquês de São Vicente 225, Gávea, Rio de Janeiro, 22451-900, Brasil
Bibliografia
- [1] Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljacic, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016). https://doi.org/10.1038/natrevmats.2016.48
- [2] Azzam, S. I. & Kildishev, A. V. Photonic bound states in the continuum: from basics to applications. Adv. Opt. Mater. 9, 2001469 (2021). https://doi.org/10.1002/adom.202001469
- [3] Hsiao, H. H., Hsu, Y. C., Liu, A. Y., Hsieh, J. C. & Lin, Y. H. Ultrasensitive refractive index sensing based on the quasi-bound states in the continuum of all-dielectric metasurfaces. Adv. Opt. Mater. 10, 2200812 (2022). https://doi.org/10.1002/adom.202200812
- [4] Sun, K. et al. 1D quasi-bound states in the continuum with large operation bandwidth in the ω k space for nonlinear optical applications. Photonics Res. 10, 1575-1581 (2022). https://doi.org/10.1364/PRJ.456260
- [5] Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196-199 (2017). https://doi.org/10.1038/nature20799
- [6] Kim, M., Kee, C.-S. & Kim, S. Graphene-based fine tuning of Fano resonance transmission of quasi-bound states in the continuum. Opt. Express 30, 30666-30671 (2022). https://doi.org/10.1364/OE.468890
- [7] Srivastava, Y. K. et al. Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces. Appl. Phys. Lett. 115, 151105 (2019). https://doi.org/10.1063/1.5110383
- [8] Xie, Y., Zhang, Z., Lin, Y., Feng, T. & Xu, Y. Magnetic quasibound state in the continuum for wireless power transfer. Phys. Rev. Appl. 15, 044024 (2021). https://doi.org/10.1103/PhysRevApplied.15.044024
- [9] von Neumann, J. & Wigner, E. P. Über merkwürdige diskrete eigenwerte. in The Collected Works of Eugene Paul Wigner (ed. Wightman, A. S.) 291-293 (Springer, Berlin, Heidelberg, 1993). https://doi.org/10.1007/978-3-662-02781-3_19 (in German)
- [10] Capasso, F. et al. Observation of an electronic bound state above a potential well. Nature 358, 565-567 (1992). https://doi.org/10.1038/358565a0
- [11] Penello, G. M. et al. Exploring parity anomaly for dual peak infrared photodetection. IEEE J. Quantum Electron. 52, 1-6 (2016). https://doi.org/10.1109/JQE.2016.2623271
- [12] Guerra, L. et al. Detecting infrared radiation beyond the band offset with intersubband transitions. IEEE Photon. Technol. Lett. 28, 1641-1644 (2016). https://doi.org/10.1109/LPT.2016.2554064
- [13] Penello, G. M at al. Leaky electronic states for photovoltaic photodetectors based on asymmetric super-lattices. Appl. Phys. Lett. 112, 033503 (2018). https://doi.org/10.1063/1.5006464
- [14] Schneider, F. et al. Photovoltaic quantum well infrared photodetectors: The four-zone scheme. Appl. Phys. Lett. 71, 246 (1997). https://doi.org/10.1063/1.119510
- [15] Pereira, P. H. et al. High performance dual-mode operation asymmetric superlattice infrared photodetector using leaky electronic states. J. Appl. Phys. 125, 204501 (2019). https://doi.org/10.1063/1.5093242
- [16] Schneider, H. & Liu, H. C. Quantum Well Infrared Photodetectors. (Springer, 2007).
- [17] Giorgetta, F. R. et al. Quantum cascade detectors. IEEE J. Quantum Electron. 45, 1039-1052 (2009). https://doi.org/10.1109/JQE.2009.2017929
- [18] Degani, M. H. & Maialle, M. Z. Numerical calculations of the quantum states in semiconductor nanostructures. J. Comput. Theo. Nanosci. 7, 454-473 (2010). https://doi.org/10.1166/jctn.2010.1380
- [19] Pereira, P. H. et al. Role of structural parameters on the leaky electronic states in the continuum of superlattice structures. J. Integr. Circuits Syst. 15, 1 (2020). https://doi.org/10.29292/jics.v15i1.108
- [20] Schönbein, C., Schneider, H. & Walther, M. Coherent carrier propagation in the continuum of asymmetric quantum-well structures. Phys. Rev. B 60, R13993 (1999). https://doi.org/10.1103/PhysRevB.60.R13993
- [21] Levine, B. F. Quantum-well infrared photodetectors. J. Appl. Phys. 74, R1 (1993). http://dx.doi.org/10.1063/1.354252
- [22] Takagi, T., Koyama, F. & Iga, K. Electron-wave reflection by multi-quantum barrier in n-GaAs/i-AlGaAs/n-GaSs tunneling diode. Appl. Phys. Lett. 59, 2877 (1991). https://doi.org/10.1063/1.105839
- [23] Kouh, T., Kemiktarak, U., Basarir, O., Lissandrello, C. & Ekinci, K. Measuring gaussian noise using a lock-in amplifier. Am. J. Phys. 82, 778 (2014). https://doi.org/10.1119/1.4873694
- [24] Penello, G. M. et al. Progress in symmetric and asymmetric superlattice quantum well infrared photodetectors. Ann. Phy. (Berl.) 531, 1800462 (2019). https://doi.org/10.1002/andp.201800462
- [25] Pereira, P. Quantum Well Infrared Photodetector For The Swir Range. in Developments and Advances in Defense and Security (eds. Rocha, A. & Pereira, P.) 363-370 (Springer, 2020). https://doi.org/10.1007/978-981-13-9155-2_29
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a369a5e-28eb-4522-b418-7ef103ed532c