PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polish Topology

Autorzy
Identyfikatory
Warianty tytułu
Konferencja
6th European Congress of Mathematics, 2-7 July 2012 Kraków
Języki publikacji
EN
Abstrakty
Rocznik
Strony
199--207
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
autor
  • VU University Amsterdam De Boelelaan 1081 1081 HV Amsterdam The Netherlands
Bibliografia
  • [1] S. M. Ageev, The axiomatic partition method in the theory of Nöbeling spaces. I. Improving partition connectivity, Mat. Sb. 198 (2007), no. 3, 3-50.
  • [2] S. M. Ageev, The axiomatic partition method in the theory of Nöbeling spaces. II. An unknotting theorem., Mat. Sb. 198 (2007), no. 5, 3-32.
  • [3] S. M. Ageev, The axiomatic partition method in the theory of Nöbeling spaces. III. Consistency of the system of axioms., Mat. Sb. 198 (2007), no. 7, 3-30.
  • [4] P. S. Alexandroff, The present status of the theory of dimension (Russian), Uspehi Mat. Nauk 6 (1951), 43-68.
  • [5] R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200-216.
  • [6] R. D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), 515-519.
  • [7] S. Banach, Téorie des opérations linéaires, Monografie Matematyczne, vol. 1 PWN, Warszawa 1932.
  • [8] C. Bessaga, A. Pełczyński, Some remarks on homeomorphisms of Banach spaces, Bull. Polon. Acad. Sci. Sér. Math. Astronom. Phys. 8 (1960), 757-760.
  • [9] C. Bessaga, A. Pełczyński, Some remarks on homeomorphisms of F-spaces, Bull. Polon. Acad. Sci. Sér. Math. Astronom. Phys. 10 (1962), 265-270.
  • [10] C. Bessaga, A. Pełczyński, Selected topics in infinite-dimensional topology, Monografie Matematyczne, vol. 58, PWN – Polish Scientific Publishers, Warszawa 1975.
  • [11] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Memoirs of the American Mathematical Society 71 (1988).
  • [12] K. Borsuk, Theory of retracts, Monografie Matematyczne, vol. 44, Państwowe Wydawnictwo Naukowe, Warszawa 1967.
  • [13] K. Borsuk, Theory of shape, Monografie Matematyczne, vol. 59, PWN – Polish Scientific Publishers, Warszawa 1975.
  • [14] R. Cauty, Un espace métrique linéaire qui n’est pas un rétracte absolu, Fund. Math. 146 (1994), 85-99.
  • [15] R. Cauty, La classe borélienne ne détermine pas le type topologique de Cp(X), Serdica Math. J. 24 (1998), 307-318.
  • [16] T. A. Chapman, Lectures on Hilbert cube manifolds, Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975, Regional Conference Series in Mathematics, no. 28, American Mathematical Society, Providence, R. I., 1976.
  • [17] J. J. Dijkstra, T. Grilliot, J. van Mill, D. J. Lutzer, Function spaces of low Borel complexity, Proc. Amer. Math. Soc. 94 (1985), 703-710.
  • [18] T. Dobrowolski, H. Toruńczyk, Separable complete ANRs admitting a group structure are Hilbert manifolds, Topology Appl. 12 (1981), 229-235.
  • [19] T. Dobrowolski, W. Marciszewski, J. Mogilski, On topological classification of function spaces of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991), 307-324.
  • [20] A. N. Dranisnikov, On a problem ofP.S. Alexandrov, Matem. Sbornik 135 (1988), 551-557-
  • [21] J. Dydak, J. J. Walsh, Infinite-dimensional compacta having cohomological dimension two: an application of the Sullivan conjecture, Topology 32 (1993), 93-104.
  • [22] R. Engelking, General topology, Heldermann Verlag, Berlin 1989.
  • [23] R. Engelking, Theory of dimensions finite and infinite, Heldermann Verlag, Lemgo 1995.
  • [24] R. Engelking, K. Sieklucki, Topology: a geometric approach, Sigma Series in Pure Mathematics, vol. 4, Heldermann Verlag, Berlin 1992.
  • [25] M. Fréchet, Les espaces abstraits, Hermann, Paris 1928.
  • [26] W. E. Haver, A covering property for metric spaces, in: Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973), Lecture Notes in Math., vol. 375, Springer, Berlin 1974, 108-113.
  • [27] W. Hurewicz, H. Wallman, Dimension theory, Van Nostrand, Princeton, NJ. 1948.
  • [28] M. I. Kadec, On topological equivalence of separable Banach spaces (Russian), Dokl. Akad. Nauk SSSR 167 (1966), 23-25.
  • [29] B. Knaster, Sur les coupures biconnexes des espaces euclidens de dimension n > 1 arbitraire {Russian), Mat. Sbornik 19 (1946), 9-18.
  • [30] J. Krasinkiewicz, Essential mappings onto products of manifolds, in: Geometric and Algebraic Topology (H. Toruńczyk, S. Jackowski, S. Spież, eds.), Banach Center Publications, vol. 18, PWN, Warszawa 1986, 377-406.
  • [31] J. Kulesza, The dimension of products of complete separable metric spaces, Fund. Math. 135 (1990), no. 1, 49-54.
  • [32] J. Kulesza, New properties of Mrowka’s space νμo, Proc. Amer. Math. Soc. 133 (2005), 899-904.
  • [33] K. Kuratowski, Topology I, Academic Press, New York 1966.
  • [34] K. Kuratowski, Topology II, Academic Press, New York 1968.
  • [35] K. Kuratowski, A. Mostowski, Set theory. With an introduction to descriptive set theory, North-Holland Publishing Co. and PWN - Polish Scientific Publishers, Amsterdam-Warszawa 1976.
  • [36] A. Lelek, Dimension inequalities for unions and mappings of separable metric spaces, Coll. Math. 23 (1971), 69-91.
  • [37] M. Levin, Characterizing Nöbeling spaces (2006), preprint.
  • [38] S. Mazurkiewicz, Sur les problème k et λ de Urysohn, Fund. Math. 10 (1927), 311-319.
  • [39] J. van Mill, R. Pol, On the existence of weakly n-dimensional spaces, Proc. Amer. Math. Soc. 113 (1991), 581-585.
  • [40] J. van Mill, R. Pol, A complete C-space whose square is strongly infinite-dimensional, Israel J. Math. 154 (2006), 209-220.
  • [41] J. van Mill, R. Pol, An example concerning the Menger-Urysohn formula, Proc. Amer. Math. Soc. 138 (2010), no. 10, 3749-3752.
  • [42] S. Mrówka, Small inductive dimension of completions of metric spaces. II, Proc. Amer. Math. Soc. 128 (2000), 1247-1256.
  • [43] A. Nagórko, Characterization and topological rigidity of Nöbeling manifolds, PhD-thesis, Warsaw University (to appear in Mem. Amer. Math. Soc), Warsaw 2006.
  • [44] E. Pol, Spaces whose nth power is weakly infinite-dimensional, but whose (n+l) th power is not, Proc. Amer. Math. Soc. 117 (1993), 871-876.
  • [45] R. Pol, A weakly infinite-dimensional compactum which is not countable-dimensional, Proc. Amer. Math. Soc. 82 (1981), 634-636.
  • [46] R. Pol, M. Reńska, On the dimensional structure of hereditarily indecomposable continua, Trans. Amer. Math. Soc. 354 (2002), no. 7, 2921-2932.
  • [47] P. Roy, Nonequality of dimensions for metric spaces, Trans. Amer. Math. Soc. 134 (1968), 117-132.
  • [48] L. Rubin, R. M. Schori, J. J. Walsh, New dimension-theory techniques for constructing infinite-dimensional examples, Gen. Top. Appl. 10 (1979), 93-102.
  • [49] W. Sierpiński, Sur les ensembles connexes et non connexes, Fund. Math. 2 (1921), 81-95.
  • [50] J.L. Taylor, A counterexample in shape theory, Bull. Amer. Math. Soc. 81 (1975), 629-632.
  • [51] H. Toruńczyk, On CE-images of the Hilbert cube and characterizations of Q-manifolds, Fund. Math. 106 (1980), 31-40.
  • [52] H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247-262.
  • [53] J.E. West, Mapping Hilbert cube manifolds to ANR’s: a solution to a conjecture of Borsuk, Annals of Math. 106 (1977), 1-18.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a3683a0-089e-4444-b17a-5cc6662f8e61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.