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Introduction 

In Section 1 we review Wallis-type infinite product representations of .π  

In Section 2 we touch on the Dido functional equation, which is used in Section  

3 to construct convenient Dido-type infinite product representations of .π  Compu-

tational aspects are treated in Section 4 to certify that (contrary to some opinions 

among physicists) infinite products may be useful even in numerical work.  

The notion of “alternating products” (Section 3) facilitates error checking in  

Section 4. 

1. Wallis-type infinite product representations of π  

Wallis’ famous infinite product (originally obtained by an interpolation process, 

cf. [1, 2]) reads 

 
3 3 5 5 7 7 4

= , where = .
2 4 4 6 6 8 π

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋯

⋯

W W   
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Taking reciprocals, this is equivalent to 

 
2 2

=1 =1

2 4 4 6 6 8 2 (2 2) 4 ( 1)
= = =

4 3 3 5 5 7 7 (2 1) (2 1)k k

k k k k

k k

π
∞ ∞

⋅ ⋅ ⋅ ⋅ + ⋅ +
⋅ ⋅ Λ

⋅ ⋅ ⋅ + +
∏ ∏  

 2 2 2 2

=1

8 24 48
= (1 (2 1) ) = (1 3 ) (1 5 ) (1 7 ) =

9 25 49k

k

∞

− − − −

− + − ⋅ − ⋅ − Λ ⋅ ⋅ Λ∏ . (1) 

Let us call (1)  “Wallis’ first product”. Multiplying by 2 (and grouping careful-

ly to maintain a distinct formation law) leads to another version, now generally 

called “Wallis’ product” (cf. [3, 4]) or, more properly, “Wallis’ second product”, 

 

2 2

2

=1 =1

2 2 4 4 6 6 (2 ) (2 )
= = =

2 1 3 3 5 5 7 (2 1)(2 1) (2 ) 1k k

k k

k k k

π
∞ ∞

⋅ ⋅ ⋅
⋅ ⋅ Λ

⋅ ⋅ ⋅ − + −
∏ ∏  (2) 

 1 1 2 1 2 1 2 1

=1

4 16 36
= (1 (2 ) ) = (1 2 ) (1 4 ) (1 6 ) =

3 15 35k

k

∞

− − − − − − − −

− − ⋅ − ⋅ − Λ ⋅ ⋅ Λ∏  

 

Remark 1. Of course, instead of ,(2)  /2π  could be expressed by doubling ,(1)  

 2

=1

2 4 4 6 6 8
= 2 = 2 = 2 (1 (2 1) )

2 4 3 3 5 5 7 7 k

k
π π

∞

−
⋅ ⋅ ⋅

⋅ ⋅ Λ − +
⋅ ⋅ ⋅

∏  (3) 

 
2 2 2 8 24 48

= 2 (1 3 ) (1 5 ) (1 7 )Λ = 2
9 25 49

− − −

− ⋅ − ⋅ − ⋅ ⋅ Λ  

(with a leading scale factor of 2 before the main product with formation law).  This 

is different from the (vanishing) divergent product  

 

2

1 2

2

=1 =1

2 2 4 4 6 6 (2 )
= = (1 (2 ) )

3 3 5 5 7 7 (2 1)k k

k
k

k

∞ ∞

− −
⋅ ⋅ ⋅

⋅ ⋅ Λ +
⋅ ⋅ ⋅ +

∏ ∏  (4) 

 
1 2 1 2 1 2 4 16 36

= (1 2 ) (1 4 ) (1 6 ) = = 0,
9 25 49

− − − − − −

+ ⋅ + ⋅ + Λ ⋅ ⋅ Λ  

and different from the (indefinitely growing) divergent product 

 

2

1 2

2

=1 =1

2 2 4 4 6 6 (2 )
= = (1 (2 ) )

1 1 3 3 5 5 (2 1)k k

k
k

k

∞ ∞

− −
⋅ ⋅ ⋅

⋅ ⋅ Λ −
⋅ ⋅ ⋅ −

∏ ∏  (5) 

 
1 2 1 2 1 2 4 16 36

= (1 2 ) (1 4 ) (1 6 ) = = .
1 9 25

− − − − − −

− ⋅ − ⋅ − Λ ⋅ ⋅ Λ ∞  
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2. The Dido functional equation 

Suppose that a continuous function )[0,)[2,: ∞→∞f  satisfies the Dido func-

tional equation 

 
2

2

1
2 (2 ) = ( ) ( ) , 2,f x f x f x x

x
+ + ≥  (6) 

related to the ancient isoperimetric problem of Dido (cf. [5]). In [6] it is shown that 

if the constant 
π

1
 is the asymptote of f  at infinity, that is if 

1
( ) =lim x

f x
π

→∞
, 

then 

 
1

( ) = cot , [2, ).f x x
x x

π 
∈ ∞ 

 
 (7) 

Restricting x  to integer values, we have the Dido sequence
1

( ) = cot( )f n
n n

π

 

for = 2,3,4,...n  , and we may interpret )(nf  as the inner radius 
n
r  (or area 

n
A ) 

of a regular polygon of order n  with fixed perimeter ,P scaled by half-perimeter 

/2P  

 ./2)/(=/2)/(=)( 2PAPrnf
nn

 (8) 

This yields explicitly 

 = ( ) = cot , = 2,3,4, (polygons),with = (circle);
2 2 2

n

P P P
r f n n ... r

n n

π

π
∞

 
 
 

 

 
2 2 2

= ( ) = cot , = 2,3,4,... (polygons), with = (circle).
4 4 4

n

P P P
A f n n A

n n

π

π
∞

 
 
 

 

Alternatively, if the outer radius 
n

R  of a regular polygon of order n  is to be 

used, the Dido sequence becomes ( ) = cos( ) / ( / 2)
n

f n R P
n

π 
 
 

, leading to the 

expression 

 cos = ( ) = cot ,
2 2

n

P P
R f n

n n n

π π   
   
   

 

implying 



P. Kahlig, J. Matkowski 46 

 = , = 2,3,4, (polygons),with = (circle).
2

2 ( )
n

P P
R n ... R

n sin
n

π π
∞

 

The inequality 
π

1
)( ≤nf  for = 2,3,4,...n  resembles the well-known 

isoperimetric inequality (cf. [7]), 

 
2

or , = 2,3,4, ,
2 4

n n

P P
r A n ...
π π

≤ ≤  (9) 

where equality holds for ∞→n  (circle). 

3. Dido-type infinite product representations of π  

It is convenient (cf. [7]) to use the following: 

 

Definition 1. An algebraic number is called constructible if it is an aggregate of 

finitely many rationals and/or square roots. 

 

Remark 2.  It is well known (cf. [7, 8]) that a regular n-gon is constructible by 

ruler and compass if and only if its Dido value ( )f n  (n  fixed) is a constructible 

algebraic number. (Otherwise the n-gon is not constructible; its Dido value might 

contain, for instance, a cube root.)  

 

Remark 3. Utilizing well-known product representations of cos  and sin  to form 

cot = cos/ sin , we obtain 

 
2

2

=1

1 ((2 1) / 2)
( ) = cot = , = 2,3, 4,...

1 ( )k

k n
f n n

n n kn

π π

π

−∞

−

− − 
 

− 
∏ . (10) 

Obviously, this expression is an “alternating product”; explicitly, it may be 

written 

 
1

2 ( 1)

=1

( ) = (1 ( / 2) ) , = 2,3, 4,
j

j

f n jn n ...π

∞
+

− −

−∏ . (11) 

Remark 4. In analogy to Leibniz’s well-known criterion for (conditionally 

convergent) alternating series [namely, the remainder of an alternating series has 

the sign of the first neglected term, and is closer to 0 than the first neglected term], 

we may formulate a criterion for alternating products: the remainder of an 
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alternating product is 1>  or 1<  just like the first neglected factor, and is closer 

to 1 than the first neglected factor. 

 

Remark 5. Using ,(10) we can compile values of the Dido sequence )(nf  for 

regular polygons of order ,202,3,= …n . Constructible n -gons are marked by *. 

 

Order 
n  

Dido value 

1
( ) = cot( )f n

n n

π

 

num. 

value 

of ( )f n  

related infinite product for π  

( )f nπ  

2* 0  0   

3* 

1

3 3

 
0.1925  2 2 2

2 2 2

1 (3 / 2) 1 (9 / 2) 1 (15 / 2)
=

1 3 1 6 1 93 3

π
− − −

− − −

− − −
⋅ ⋅ Λ

− − −

 

4* 
1

4
 

0.2500  
2 2 2

2 2 2

1 2 1 6 1 10
=

4 1 4 1 8 1 12

π
− − −

− − −

− − −
⋅ ⋅ Λ

− − −
 

5* 
5 2 5

5 5

+

 

0.2753  2 2 2

2 2 2

5 2 5 1 (5/ 2) 1 (15/ 2) 1 (25/ 2)
=

1 5 1 10 1 155 5

π
− − −

− − −

+ − − −
⋅ ⋅ Λ

− − −
 

6* 
1

2 3
 

0.2887  
2 2 2

2 2 2

1 3 1 9 1 15
=
1 6 1 12 1 182 3

π
− − −

− − −

− − −
⋅ ⋅ Λ

− − −
 

7 

(7)f  0.2966  
2 2 2

2 2 2

1 (7 / 2) 1 (21/ 2) 1 (35 / 2)
(7) =

1 7 1 14 1 21
fπ

− − −

− − −

− − −
⋅ ⋅ Λ

− − −
 

8* 
1 2

8

+
 

0.3018  2 2 2

2 2 2

(1 2) 1 4 1 12 1 20
=

8 1 8 1 16 1 24

π
− − −

− − −

+ − − −
⋅ ⋅ Λ

− − −
 

9 

(9)f  0.3053  
2 2 2

2 2 2

1 (9 / 2) 1 (27 / 2) 1 (45 / 2)
(9) =

1 9 1 18 1 27
fπ

− − −

− − −

− − −
⋅ ⋅ Λ

− − −
 

10* 
5 2 5

10

+
 

0.3078  2 2 2

2 2 2

5 2 5 1 5 1 15 1 25
=

10 1 10 1 20 1 30

π
− − −

− − −

+ − − −
⋅ ⋅ Λ

− − −
 

11 

(11)f  0.3096  
2 2 2

2 2 2

1 (11/ 2) 1 (33/ 2) 1 (55 / 2)
(11) =

1 11 1 22 1 33
fπ

− − −

− − −

− − −
⋅ ⋅ Λ

− − −
 

12* 
2 3

12

+

 

0.3110  2 2 2

2 2 2

(2 3) 1 6 1 18 1 30
=

12 1 12 1 24 1 36

π
− − −

− − −

+ − − −
⋅ ⋅ Λ

− − −
 

13 

(13)f  0.3121  
2 2 2

2 2 2

1 (13/ 2) 1 (39 / 2) 1 (65 / 2)
(13) =

1 13 1 26 1 39
fπ

− − −

− − −

− − −
⋅ ⋅ Λ

− − −
 

14 

(14)f  0.3129  
2 2 2

2 2 2

1 7 1 21 1 35
(14) =

1 14 1 28 1 42
fπ

− − −

− − −

− − −
⋅ ⋅ Λ

− − −
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15* 

60

A
 

0.3136  
2 2 2

2 2 2

1 (15 / 2) 1 (45 / 2) 1 (75 / 2)
= ,

60 1 15 1 30 1 45

Aπ
− − −

− − −

− − −
⋅ ⋅ Λ

− − −
 

16* 

16

B
 

0.3142  
2 2 2

2 2 2

1 8 1 24 1 40
= ,

16 1 16 1 32 1 48

Bπ
− − −

− − −

− − −
⋅ ⋅ Λ

− − −
 

where = (1 5)(2 3 10 2 5 )A + + −  and =1 2(1 2 2 )B + + +  

17* 
1 15

17 17

D

D

+

−

 

0.3147  2 2 2

2 2 2

15 1 (17 / 2) 1 (51/ 2) 1 (85/ 2)
= ,

17 17 1 17 1 34 1 51

D

D

π
− − −

− − −

+ − − −
⋅ ⋅ Λ

− − − −
 

where = 17 34 2 17 2 17 3 17 34 2 17 2 34 2 17D + − + + − − − +  

18 

(18)f  0.3151  
2 2 2

2 2 2

1 9 1 27 1 45
(18) =

1 18 1 36 1 54
fπ

− − −

− − −

− − −
⋅ ⋅ Λ

− − −
 

19 
(19)f  0.3154  

2 2 2

2 2 2

1 (19 / 2) 1 (57 / 2) 1 (95/ 2)
(19) =

1 19 1 38 1 57
fπ

− − −

− − −

− − −
⋅ ⋅ Λ

− − −
 

20* 

20

E
 

0.3157  
2 2 2

2 2 2

1 10 1 30 1 50
= ,

20 1 20 1 40 1 60

Eπ
− − −

− − −

− − −
⋅ ⋅ Λ

− − −
 

where =1 5 5 2 5.E + + +  

 

For n→∞  we obtain the transcendental number (Dido value for circle) 

 
1 1

( ) = cot = 0.3183.lim
n

f
n n

π

π→∞

 
∞ ≈ 

 
 

Remark 6. The items of the list in Remark 5 admit several interpretations. For 

instance, by (10)  we obtain a multitude of infinite products for ,π   

 

2

2

=1

1 1 ((2 1) / 2)
= , = 3,4,5,... ,

( ) 1 ( )k

k n
n

f n kn
π

−∞

−

− −

−

∏  (12) 

where )(1/ nf  is a scale factor, it is for general 2 < <n ∞  a general algebraic 

number π>  [but reasonably simple for n *, i.e. for ( )f n  a constructible algebraic 

number (cf. Remark 2), which implies in this case that also 1 / ( )f n  (the scale 

factor) is a constructible algebraic number]. For 2 < <n ∞ , the product represents 

a positive transcendental number <1. For n→∞ , the scale factor approaches π  

while the product approaches 1. In the extreme case = 2n , the scale factor grows 

indefinitely, 1 / (2) =f ∞ , while the product degenerates to .0  Thus, Dido-type 

representations of the transcendental number π  consist in general (namely for 

2 < <n ∞ ) of two factors: an algebraic scale factor (of the same magnitude as π ) 
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and a transcendental infinite product (of magnitude 1). In principle, also Wallis-

type products like (1)  respectively (2)  may be interpreted as such 

a decomposition: = 4 ...π Π  [used e.g. in (13)  below] respectively = 2 ...;π Π  

Wallis-type products lack a convenient error estimation (in contrast to Dido-type 

products, see next section). 

4. Computational aspects 

Approximations (of order N ∈N) to Wallis’s first product (1)  may be written  

 2

=1

( ) = 4 (1 (2 1) ),
N

k

pi N k
−

− +∏  (13) 

with π=)(∞pi . To 3 and 6 significant digits we get 

 (300) = 3.14 and (400000) = 3.14159 ,pi ... pi ...  

exhibiting rather slow convergence, and prompting statements like the following 

[3]: “These infinite products have a variety of uses in analytical mathematics. 

However, because of rather slow convergence, they are not suitable for precise 

numerical work”. Yet we will show presently that Dido-like infinite products may 

be numerically useful. 

For entry 4 of the list in Remark 5, i.e. taking = 4n  in ,(12) we have 

approximations (of order N∈N ) 

 
2

2

=1

1 (4 2)
( ) = 4 ,

1 (4 )

N

k

k
Pi N

k

−

−

− −

−

∏  (14) 

with ( ) =Pi π∞ . To 3, 6 and 9 significant digits we obtain here 

 (10) = 3.14 , (300) = 3.14159... = ... and (10000) = 3.14159265...,Pi ... Pi Pi  

showing an acceptable rate of convergence. Moreover, we can calculate the 

expected error: according to Remark 4, we just have to look at the first neglected 

factor 
1
ν  in (14)  [in comparison to (12)], namely 

2

1
( ) = 1 (4( 1) 2)N Nν

−

− + − ; the 

remainder R  is closer to 1 than 
1
ν , i.e. 

1
1 ( ) < 1 ( )R N Nν− − , and we obtain for 

the absolute error E  (when retaining N  factors only) the expression  

 
2

1
( ) = 41 ( ) < 41 ( ) = 4(4( 1) 2) ,E N R N N Nν

−

− − + −  (15) 

where the leading 4  is the scale factor from (14). 
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Thus, by (15), expected errors for (14) are  

 
3 6 9

(10) < 2.3 10 , (300) < 2.8 10 and (10000) = 2.5 10 .E E E
− − −

⋅ ⋅ ⋅  

Verification: empirical errors of (14)  are 

 
3 6 9

(10) = 1.0 10 , (300) = 1.1 10 and (10000) = 1.0 10 .Pi Pi Piπ π π
− − −

− ⋅ − ⋅ − ⋅  
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