PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Total phosphorus and total Kjeldahl nitrogen removal using an aerobic granular sludge process. Case studies ANN and RSM modeling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Removing nutrients from wastewater is essential because high concentrations in aquatic systems lead to severe eutrophication problems, the most common impairment of surface waters such as lakes and oceans. Total phosphorus (TP) and total Kjeldahl nitrogen (TKN) were removed from mixed wastewater using an aerobic granular sludge process in a sequencing batch reactor (AGS-SBR). An artificial neural network (ANN) and response surface methodology (RSM) were applied to evaluate the main parameters of the process. For TKN removal, only cycle time (CT) (0.0475) was a significant variable, achieving removal efficiencies of up to 81%. In TP case removal, two parameters, VER and AR, were substantial for this process, completing elimination efficiencies of around 40%. On comparing the models with statistical indices, ANN coupled with the moth-flame optimization algorithm (ANN-MFO) demonstrated higher performance with an adjusted R2 (0.9866) for the case of TP removal and (0.9519) for TKN removal.
Rocznik
Strony
123--137
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Department of Civil and Environmental Engineering, Engineering School, Universidad de las Américas Puebla, Sta. Catarina Mártir, San Andrés Cholula, Puebla 72810, México
  • Department of Water and Energy, CUTonalá Universidad de Guadalajara, Av. Nuevo Periférico No. 555, Ejido San José Tateposco Campus Tonalá, Jalisco 45425, México
  • Department of Environmental Engineering. Universidad Politécnica del Estado de Morelos, Jiutepec, Morelos 62550, México
  • Department of Water and Energy, CUTonalá Universidad de Guadalajara, Av. Nuevo Periférico No. 555, Ejido San José Tateposco Campus Tonalá, Jalisco 45425, México
Bibliografia
  • [1] LI Y., ZOU J., ZHANG L., SUN J., Aerobic granular sludge for simultaneous accumulation of mineral phosphorus and removal of nitrogen via nitrite in wastewater, Biores. Technol., 2014, 154, 178–84. DOI: 10.1016 /j.biortech.2013.12.033.
  • [2] CUI L., SHEN H., KANG P., GUO X., LI H., WANG Y., WAN J., DAGOT C., Stability and nutrients removal performance of a Phanerochaete chrysosporium-based aerobic granular sludge process by stepfeeding and multi A/O conditions, Biores. Technol., 2021, 341, 125839. DOI: 10.1016/j.biortech.2021.125839.
  • [3] WANG Q., KONG J., LIANG J., GAMAL EL-DIN M., ZHAO P., XIE W., CHEN C., Nitrogen removal intensification of aerobic granular sludge through bioaugmentation with “heterotrophic nitrification-aerobic denitrification” consortium during petroleum wastewater treatment, Biores. Technol., 2022, 361, 127719. DOI: 10.1016/j.biortech.2022.127719.
  • [4] ZAGHLOUL M.S., HAMZA R.A., IORHEMEN O.T., TAY J.H., Performance prediction of an aerobic granular SBR using modular multilayer artificial neural networks, Sci. Total Environ., 2018, 645, 449–459. DOI: 10.1016/j.scitotenv.2018.07.140.
  • [5] XAVIER A., GUIMARAES L.B., MAGNUS B.S., LEITE W.R., VÍTOR J., VILAR P., DA COSTA R.H., How volumetric exchange ratio and carbon availability contribute to enhance granular sludge stability in a fill/draw mode SBR treating domestic wastewater?, J. Water Proc. Eng., 2021, 40, 101917. DOI: 10.1016 /j.jwpe.2021.101917.
  • [6] NI B.J., YU H.Q., Mathematical modeling of aerobic granular sludge. A review, Biotechnol. Adv., 2010, 28, 895–909. DOI: 10.1016/j.biotechadv.2010.08.004.
  • [7] LIU X., LEE D.-J., Aerobic granular sludge processes, INC, 2022. DOI: 10.1016/b978-0-323-99874-1.00002-6.
  • [8] WANG L., ZHAN H., WU G., ZENG Y., Effect of operational strategies on the rapid start-up of nitrogen removal aerobic granular system with dewatered sludge as inoculant, Biores. Technol., 2020, 315, 123816. DOI: 10.1016/j.biortech.2020.123816.
  • [9] OFMAN P., STRUK-SOKOŁOWSKA J., Artificial neural network (ANN) approach to modelling of selected nitrogen forms removal from oily wastewater in anaerobic and aerobic GSBR process phases, Water, 2019, 11, 1594. DOI: 10.3390/w11081594.
  • [10] BETIKU E., ODUDE V.O., ISHOLA N.B., BAMIMORE A., OSUNLEKE A.S., OKELEYE A.A., Predictive capability evaluation of RSM, ANFIS and ANN: A case of reduction of high free fatty acid of palm kernel oil via esterification process, En. Conv. Manage., 2016, 124, 219–230. DOI: 10.1016/j.enconman.2016.07.030.
  • [11] WANG X., YANG G., LI F., FENG Y., REN G., Response surface optimization of methane potentials in anaerobic codigestion of multiple substrates. Dairy, chicken manure and wheat straw, Waste Manage. Res., 2013, 31, 60–66. DOI: 10.1177/0734242X12468197.
  • [12] APHA. Standard Methods for the Examination of Water and Wastewater, 21th Ed., American Public Health Association, Washington 2005.
  • [13] KHAN N.A., MORABET R.E., KHAN R.A., ALSUBIH M., GAURAV G.K., KLEMEŠ J.J., THAKUR A.K., Mod-elling and parameter optimisation for performance evaluation of sequencing batch reactor for treating hospital wastewater, Biomass Conv. Biorefin., 2022, 1–16. DOI: 10.1007/s13399-022-03406-z.
  • [14] LIU Y.Q., TAY J.H., Influence of cycle time on kinetic behaviors of steady-state aerobic granules in sequenc-ing batch reactors, Enz. Microb. Technol., 2007, 41, 516–522. DOI: 10.1016/j.enzmictec.2007.04.005.
  • [15] MIRJALILI S., Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowl. Based Syst., 2015, 89, 228–249. DOI: 10.1016/j.knosys.2015.07.006.
  • [16] MIRSOLEIMANI-AZIZI S.M., AMOOEY A.A., GHASEMI S., SALKHORDEH-PANBECHOULEH S., Modeling the removal of endosulfan from aqueous solution by electrocoagulation process using artificial neural network (ANN), Ind. Eng. Chem. Res., 2015, 54, 9844–9849. DOI: 10.1021/acs.iecr.5b02846.
  • [17] WANG L., YU X., XIONG W., LI P., WANG S., FAN A., SU H., Enhancing robustness of aerobic granule sludge under low C/N ratios with addition of kitchen wastewater, J. Environ. Manage., 2020, 265, 110503. DOI: 10.1016/j.jenvman.2020.110503.
  • [18] SARVE A., SONAWANE S.S., VARMA M.N., Ultrasound assisted biodiesel production from sesame (Sesamum indicum L.) oil using barium hydroxide as a heterogeneous catalyst: Comparative assess-ment of prediction abilities between response surface methodology (RSM) and artificial neural net-work (ANN), Ultrason. Sonochem., 2015, 26, 218–228. DOI: 10.1016/j.ultsonch.2015.01.013.
  • [19] PRIYANKA K., BEHERA M., REMYA N., Greywater treatment in SBR-SND reactor. Optimization of hydraulic retention time, volumetric exchange ratio and sludge retention time, Environ. Technol., 2022, 1–12. DOI: 10.1080/09593330.2022.2072238.
  • [20] HUANG W., CAI W., HUANG H., LEI Z., ZHANG Z., TAY J.H., LEE D.-J., Identification of inorganic and organic species of phosphorus and its bio-availability in nitrifying aerobic granular sludge, Water Res., 2015, 68, 423–431. DOI: 10.1016/j.watres.2014.09.054.
  • [21] YIN Y., SUN J., LIU F., WANG L., Effect of nitrogen deficiency on the stability of aerobic granular sludge, Biores. Technol., 2019, 275, 307–313. DOI: 10.1016/j.biortech.2018.12.069.
  • [22] ALVES O.I.M., ARAÚJO J.M., SILVA P.M.J., MAGNUS B.S., GAVAZZA S., FLORENCIO L., KATO M.T., Formation and stability of aerobic granular sludge in a sequential batch reactor for the simultaneous removal of organic matter and nutrients from low-strength domestic wastewater, Sci. Total Environ., 2022, 843, 156988. DOI: 10.1016/j.scitotenv.2022.156988.
  • [23] PISHGAR R., DOMINIC J.A., SHENG Z., TAY J.-H., Influence of operation mode and wastewater strength on aerobic granulation at pilot scale: Startup period, granular sludge characteristics, and effluent quality, Water Res., 2019, 160, 81–96. DOI: 10.1016/j.watres.2019.05.026.
  • [24] WILÉN B.M., LIÉBANA R., PERSSON F., MODIN O., HERMANSSON M., The mechanisms of granulation of activated sludge in wastewater treatment, its optimization, and impact on effluent quality, Appl. Microbiol. Biotechnol., 2018, 102, 5005–5020. DOI: 10.1007/s00253-018-8990-9.
  • [25] LI D., LV Y., ZENG H., ZHANG J., Enhanced biological phosphorus removal using granules in continuous-flow reactor, J. Chem. Eng., 2016, 298, 107–116. DOI: 10.1016/j.cej.2016.03.152.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a2d3acb-2386-4544-b097-af2addcbbc3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.