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TOTAL PHOSPHORUS AND TOTAL KJELDAHL NITROGEN 
 REMOVAL USING AN AEROBIC GRANULAR SLUDGE 
PROCESS. CASE STUDIES ANN AND RSM MODELING 

Removing nutrients from wastewater is essential because high concentrations in aquatic systems 
lead to severe eutrophication problems, the most common impairment of surface waters such as lakes 
and oceans. Total phosphorus (TP) and total Kjeldahl nitrogen (TKN) were removed from mixed 
wastewater using an aerobic granular sludge process in a sequencing batch reactor (AGS-SBR). An 
artificial neural network (ANN) and response surface methodology (RSM) were applied to evaluate 
the main parameters of the process. For TKN removal, only cycle time (CT) (0.0475) was a significant 
variable, achieving removal efficiencies of up to 81%. In TP case removal, two parameters, VER and 
AR, were substantial for this process, completing elimination efficiencies of around 40%. On compar-
ing the models with statistical indices, ANN coupled with the moth-flame optimization algorithm 
(ANN-MFO) demonstrated higher performance with an adjusted R2 (0.9866) for the case of TP re-
moval and (0.9519) for TKN removal. 

1. INTRODUCTION 

Removal of nutrients from wastewater is essential because high concentrations in 
aquatic systems lead to severe problems of eutrophication, the most common impair-
ment of surface waters such as lakes and oceans [1]. In this regard, ever since aerobic 

 _________________________  
1Department of Civil and Environmental Engineering, Engineering School, Universidad de las Amé- 

ricas Puebla, Sta. Catarina Mártir, San Andrés Cholula, Puebla 72810, México. 
2Department of Water and Energy, CUTonalá Universidad de Guadalajara, Av. Nuevo Periférico No. 

555, Ejido San José Tateposco Campus Tonalá, Jalisco 45425, México, corresponding author: J. Morales- 
-Riveira, email address: juan.morales9853@udg.mx 

3Department of Environmental Engineering. Universidad Politécnica del Estado de Morelos, Jiutepec, 
Morelos 62550, México. 

https://orcid.org/0000-0001-8434-4190
https://orcid.org/0009-0008-0040-5100
https://orcid.org/0000-0003-0682-5102


124 C. SANCHEZ-SANCHEZ  et al. 

granular sludge (AGS) technology was first reported in 1991, the formation mechanisms 
and application of aerobic granular sludge have become significant topics in the field of 
water treatment research due to its being a breakthrough technology with tremendous 
potential to become the new standard for aerobic treatment of wastewater [2]. On the 
other hand, the conventional activated sludge (CAS) method commonly faces some op-
erational challenges: its performance is compromised due to low sludge settling capa-
bility, byproduct generation, long sludge retention time, and the large surface areas re-
quired for installing tanks for proper nitrogen treatment [3]. 

Compared with CAS, AGS exhibits excellent settling capability, high biomass re-
tention, simultaneous nutrient removal, lower area requirement, strong resistance to or-
ganic loading rate, lower energy expenditure during the process, a small foomodelrint, 
and spectacular biomass biodiversity [3, 4]. All these promising features are rooted in 
the phenomenal structure of aerobic granules [5]. Aerobic granules are dense, self-im-
mobilized, and multi-species microbial aggregates cultivated mainly in bubble-column 
sequencing batch reactors (SBRs) [5]. To improve, promote, and standardize their prac-
tical application for wastewater treatment, researchers worldwide extensively investigated 
the fundamentals of AGS systems to understand their performance capacities, microbial 
interrelationships, and structural properties [6]. Therefore, many studies specifically fo-
cused on identifying the effect of operating factors that influence AGS processes, such as 
organic loading rate (OLR), pH, dissolved oxygen (DO), volumetric exchange ratio 
(VER), temperature, aeration rate (AR), cycle time (CT), and the ratio of chemical oxygen 
demand to nitrogen (COD/N), among other [7, 8]. Since the operating factors applied are 
closely tied to AGS performance, these processes may be identified as complex and 
largely unpredictable systems. In this regard, a mathematical simulation model that en-
compasses all the influential factors could be invaluable as an evaluation tool to aid in the 
design, operation, and optimization of the system at large scales [4, 6]. Moreover, mathe-
matical modeling has proven to be very useful in studying complex processes, such as 
AGS systems [6]. 

Artificial intelligence such as artificial neural networks (ANN), has undergone signif-
icant development, allowing the simulation of highly non-linear biological systems with 
outstanding results [4]. Traditional statistical models have limitations that do not allow 
them to simulate the system under study; artificial intelligence models, on the other hand, 
do not have those limitations [4, 9]. Nonetheless, there needs to be more research reported 
on artificial intelligence to predict the performance of an AGS system on wastewater man-
agement [4, 6]. One of the main difficulties of simulating highly non-linear systems such 
as AGS is the complicated relationship between biological, physical, and chemical activ-
ities [9]. 

The response surface method (RSM) is a mathematical tool for modeling and ex-
perimental design. This method has been employed for modeling physical and biologi-
cal systems to allow an estimation of the main parameters surrounding the processes 
with a limited number of experiments [10]. The present study aims at developing an 
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RSM and ANN for modeling highly non-linear biological systems such as AGS in 
sequential batch reactors (SBR) at bench-scale, to define the main parameters in re-
moval efficiencies of TKN and TP from mixed wastewater using aerobic granular 
sludge system. 

2. MATERIAL AND METHODS 

Reactor operation. The SBR with a total volume of 12 dm3 (internal diameter of  
14 cm and height of 90 cm) shown in Fig. 1 had a working volume of 4.5 dm3. The 
reactor was equipped with air pumps (Elite-801 and Elite-802, Hagen group®, USA) to 
keep the DO higher than 2 mg/dm3. The reactor operated at room temperature between 
23 and 31 °C, with volumetric exchange ratios of 50, 67, and 75%. 

 

Fig. 1. View of equipment for SBR operation 

Cultivation of granules was carried out exclusively under aerobic conditions. These 
experiments were conducted in the installations of an industrial WWTP located in the 
Cuernavaca Valley in Morelos, Mexico. The seed inoculum, of municipal origin, was 
adapted to the characteristics of the feed wastewater. 

Subsequently, stable aerobic granulation was developed to apply the established op-
erational configurations. In the experiments, three influential operating parameters were 
varied according to the experimental design in situ, with measurements being divided into 
successive stages. The preceding was ordered to evaluate the AGS performance on or-
ganic contaminant removal under different operating conditions. The experimental setup, 
using a Box-Behnken design (BBD), provided a total of 17 experiments. These operating 
combinations were applied to the AGS-SBR. The total operating period for operational 
combinations was about 87 days. 

Wastewater source and seed sludge. The wastewater samples were collected from 
the primary settling tank of the installation, where the experimental study was carried 
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out (Table 1). The seed sludge for the formation of aerobic granulation and experiments 
were taken from a municipal WWTP and an industrial WWTP located in the Cuerna-
vaca Valley. 

T a b l e  1  

Composition of mixed industrial 
/municipal wastewater used in this study 

Parameter 
[mg/dm3] Average 

COD  2.316±1.287 
TSS  569±1.146 
BOD  709±122.7 
TP  24.4±7.2 
TN  85.1±37.02 
pHa 7.32±0.37 

apH units; n = 45. 

Analysis methods and data collection. The input variables in the model formulation 
were total phosphorus (TP), total Kjeldahl nitrogen (TKN), nitrates, chemical oxygen de-
mand (COD), total suspended solids (TSS), volumetric sludge index (SVI), temperature (T), 
pH, DO, and conductivity. The data were obtained through measurement of each parameter 
throughout the operating period. The TKN data were acquired with a Büchi Kjelmaster  
K-375 instrument. Nitrate nitrogen (NO3-N) was measured following the 8,039 HACH col-
orimetric method. TP was determined using a colorimetric method (10,127 HACH). SVI 
was analyzed based on standard methods [11]. COD was measured according to NMX-AA- 
-030/2-SCFI-2011. DO was monitored every 24 h with a dissolved oxygen meter dissolved 
oxygen meter YSI model 58. Temperature, pH, and conductivity were measured in situ with 
an OAKlon PC540 potentiometer. The behavior of the AGS and the general performance 
of the system were monitored. 

To verify the measurement quality for the parameters of mixed wastewater, the fol-
lowing were used: VER, %, AR, dm3/min, and CT, day [6, 13, 14]. The following equa-
tion was used to obtain the removal efficiencies for TKN and TP 

 0

0

100%Y YR
Y
−

= ×  (1) 

where R represents the removal efficiency, Y0 is the initial measurement, and Y is the 
final TP or TKN measurement. 

Response surface methodology modeling. Table 2 shows the design matrix with three 
main factors. One factor had three levels where VER ranged from 50 to 75% (A), AR from 
2.5 to 3.5 dm3/min (B), and CT from 1.8 to 3.2 day (C). The response variables were TP 
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(Y1) and TKN (Y2) removals using a BBD. Design-Expert software 10.0.1 (Stat-Ease, Inc., 
Minneapolis, MN, USA) was used for all statistical analysis and 3D plotting.  

T a b l e  2  

Levels of independent variables 

Factor Parameter Coded variables 
–1 0 1 

A  VER, % 50 67 75 
B AR, dm3/min 2.5 3 3.5 
C CT, day  1.8 2.5 3.2 

The second-order polynomial function obtained by correlating the three independent 
variables by predicting the response values is as follows 

 2
0

1 1 1 1

k k k k

i i ii i ij i j
i i i j

Y b b X b X b X X ε
= = = =

= + + + +∑ ∑ ∑∑  (2) 

where Y represents response TP and TKN removal efficiencies, %, b0 is the intercept 
value, bi, i = 1, 2, 3, …, n, represents the first model coefficients for Xi, bii represents 
the quadratic coefficients of Xi, bij are the correlation coefficients for Xi and Xj, and ε is 
the random error. 

Neural network modeling and optimization. The MATLAB R2021a software (Math-
works, Inc., Natick, MA, USA) and neural network toolbox were used to operate the dif-
ferent architectures proposed (TP and TKN removal). A moth flame optimizer algorithm 
(MFO) coupled with ANN was used to optimize the models [15] (Table 2). The proposed 
architecture for the ANN models (Fig. 2) was built by applying an input layer with three 
neurons VER (A), AR (B), and CT (C), a hidden layer, and an output layer with one neuron 
(TP or TKN).  

To increase the performance of the ANN, the system was taken as the objective func-
tion, which was then minimized using a metaheuristic algorithm. The metaheuristic MFO 
algorithm was used to adjust the weights of the internal layers of the ANN [10]. Three 
groups were formed: a training group (70%), a validation group (15%), and a test group 
(15%), to find the most efficient number of neurons in the hidden layer. Iterative tests 
were used to evaluate groups of 4, 6, 8, 10, and 12 hidden neurons and in assessing the 
performance of each simulation, the mean square error (MSE) was determined. All the 
data presented were normalized using equation [16]. 

 min
norm

max min

0.8 0.1ix xX
x x

 −
= + − 

  (3) 

where xi represents the current value that is being normalized, xmin is the minimum value 
of the data set, and xmax is the maximum value of the data set. 
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Fig. 2. Architecture for: a) ANN TP removal, b) ANN TKN removal 

Evaluation of the developed mathematical models. To delimit the operation of the 
models, statistical indicators were used to evaluate the performance of the models pre-
sented in this work. The indicators were: the correlation coefficient (R), the coefficient 
of determination (R2), adjusted R2, MSE, root mean squared error (RMSE), mean abso-
lute error (MAE), and average absolute deviation (AAD) [10]. 

3. RESULTS 

Two empirical models were determined for analysis of the behavior between the 
process variables and the responses, giving the following equations for TP (Y1) and TKN 
(Y2) removal, respectively 
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1

2 2 2

(%) 25.21 1.41 1.53 0.65 0.072 3.09

0.63 8.58 11.24 3.09

Y A B C AB AC

BC A B C

= + + − + −

− + + +
 

(4)
 

 2

2 2 2

(%) 80.16 0.19 1.56 3.17 9.92 11.88

5.02 1.90 9.60 12.83

Y A B C AB AC

BC A B C

= − − − − −

+ − − −
 

(5)
 

T a b l e  3  

Box Behnken design: observed and predicted values for TP and TKN removal 

No. Experimental Predicted  
ANN-MFO 

Predicted 
RSM Experimental Predicted  

ANN-MFO 
Predicted 

RSM 
TP TKN 

1 44.99 41.59 42.35 80.15 81.59 80.16 
2 25.21 25.21 25.21 58.88 53.12 56.99 
3 25.21 25.21 25.21 54.27 54.39 68.79 
4 32.25 32.25 40.73 53.47 53.13 58.02 
5 40.14 40.14 42.05 80.15 81.59 80.16 
6 47.63 47.44 51.06 78.03 85.72 77.21 
7 39.80 39.80 42.03 80.15 81.59 80.16 
8 25.21 25.21 25.21 56.10 57.69 54.32 
9 40.14 40.14 31.73 49.31 50.92 51.1 

10 25.21 25.21 25.21 52.81 53.13 62.07 
11 25.21 25.21 25.21 76.59 76.24 68.41 
12 35.34 35.34 38.03 79.10 79.09 79.95 
13 42.48 42.48 39.79 72.00 71.97 67.48 
14 49.77 49.77 47.99 58.57 56.95 60.49 
15 35.32 35.32 33.03 80.15 81.59 80.16 
16 42.57 44.89 39.00 80.15 81.59 80.16 
17 35.34 35.34 37.99 78.03 69.08 62.45 

 
Table 3 shows the results of 17 experiments on wastewater in a facility that treats in-

dustrial and municipal effluents by applying three-level-three factors through BBD. 

3.1. EVALUATION OF THE PREDICTIVE PERFORMANCE OF PROPOSED MODELS 

Table 4 shows the results of the analysis of variance (ANOVA) for TP (a) and TKN (b). 
This analysis establishes, following the linear factors in the case of TP removal, that the 
quadratic parameters for VER and AR with a lower p-value (<0.05) are determinants for 
the modeling in the removal of this pollutant from mixed wastewater [10]. For the 
modeling of TKN removal, the CT parameter was also very influential, since it gives 
a p-value of 0.0475. In addition, the VER parameter gave values above 0.05 for the  
p-value in both variables. 
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T a b l e  1  

Analysis of variance (ANOVA) for TP and TKN 

Source 
TP TKN 

Sum of 
 squares df Mean square F- 

-value p-value Sum of 
 squares df Mean square F-  

-value p-value 

Model 1039.24 9 115.47 8.25 0.005 2340.24 9 260.03 18.68 0.0004 
A-VER 15.95 1 15.95 1.14 0.3212 0.29 1 0.29 0.021 0.8888 
B-AR 18.67 1 18.67 1.33 0.2860 19.55 1 19.55 1.40 0.2747 
C-CT 3.43 1 3.43 0.25 0.6357 80.18 1 80.18 5.76 0.0475 
A2 309.97 1 309.97 22.15 0.0022 15.19 1 15.19 1.09 0.3310 
B2 531.78 1 531.78 38.00 0.0005 388.44 1 388.44 27.90 0.0011 
C2 40.22  40.22 2.87 0.1338 692.80  692.80 49.77 0.0002 
Residual 
error 97.97 7 14.00   97.44 7 13.92   

Lack 
of fit 79.21 3 32.66   97.44 3 13.92   

Pure 
error 0.00 4 0.00   0.00 4 0.00   

Cor 
total 1137.21 16    2437.68 16    

 
As is seen from the table, the VER does not play such an essential role within the 

modeled system, which was also in line with other studies found in the literature [1, 17]. 

3.2. ARTIFICIAL NEURAL NETWORK MODELING 

Results for TP removal using the ANN-MFO model give the accuracy obtained 
from 4 neurons in the hidden layer (MSE = 16.467), 6 neurons (MSE = 3.456), 8 neurons 
(MSE = 21.233), 10 neurons (MSE = 13.832) and 12 neurons (MSE = 14.562), and reveal 
that the most efficient architecture was the one using 6 neurons in the hidden layer 
(Fig. 3a). Also, the prediction plots show R-values of 1 for validation, 1 for testing, 1 for 
training, and 0.99255 for the whole data set. Results for TKN modeling for 4 neurons in 
the hidden layer (MSE = 14.620), 6 neurons (MSE = 8.912), 8 neurons (MSE = 5.481), 
10 neurons (MSE = 13.708) and 12 neurons (MSE = 18.332), showing that the most 
significant architecture was the one using 8 neurons in the hidden layer (Fig. 3b). 
Prediction plots, meanwhile, show R-values of 0.9699 for validation, 1 for testing, 
0.9868 for training, and 0.9659 for the whole data set [10]. 

3.3. POLLUTION REMOVAL EFFICIENCY 

This work evaluated three different conditions of AR (2.5, 3, 3.5 dm3/min), CT (1.8, 
2.5, 2.3 d), and VER (50, 67, 75%) in a reactor at bench-scale. These configurations 
were modeled to obtain three-dimensional plots as shown in Fig. 4. 
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Fig. 3. Correlation plots for ANN-MFO model for  
TP removal (four upper plots), and TKN removal (four lower plots) 



132 C. SANCHEZ-SANCHEZ  et al. 

 
 

  

  

Fig 4. Three-dimensional response surface plots showing effects of variables  
and their interaction on reduction of TP and NTK removal effectiveness:  

a), d) VER vs. CT at AR = 3 dm3/min, b), e) AR vs. VER at CT = 2.5 d, c), f) AR vs. CT at VER = 67% 

These parameters are associated directly or indirectly with each other, defined ac-
cording to treatment targets, properties of granules, and treated water quality. The model 

  

B: AR(dm3/min) 
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results showed that the operating configurations shown in Figs. 4a and 4d, where VER 
= 50%, and CT = 3.2 d, under an AR fixed at 3.2 dm3/min, can achieve TP removal 
efficiency of 40%. However, TKN removal under these conditions achieves efficiencies 
of ca. 74%. Conversely, under an increase of VER to 75% and a decrease of CT to 
1.8 day, TKN removal of more than 80% can be achieved (Fig. 4d). On the other hand, 
Figs. 4b and 4e show that a configuration of CT constant at 2.5 day combined with AR 
of 2.5 dm3/min and VER = 75% achieved maximum TP and TKN removal efficiencies 
of 50 and 80%, respectively. However, if VER values are reduced under these operating 
conditions, the efficiencies of this parameter are negatively affected, only achieving TP and 
TKN removals of ca. 35 and 57%, respectively. 

Furthermore, Figs. 4c and 4f show that by applying operational configurations  
where all the factors evaluated in this study are constant (CT = 2.5 day, VER = 67%, 
AR = 3 dm3/min) the TP removal efficiency is lower at 15%, while TKN removal under 
these same conditions is higher at 70%. These conditions show inverse behavior on the 
removal efficiency of TP and TKN at constant values of the operating parameters. The 
results showed that by applying a CT  ≥ 2.5 day, the AGS system gives a better perfor-
mance on TP removal, although TKN removal is affected. The highest TKN removals 
(ca. 70%) were obtained under a CT  ≥ 2.5 day, combined with values of AR ≥ 3 dm3/min 
and VER = 75% (Figs. 4d and 4e). Moreover, Fig. 4f showed that an AR ≤ 3 dm3/min 
setup with a CT = 1.8 day achieves TKN removals of up to 70%. These operating con-
ditions were applied at constant VER equal to 67%. 

4. DISCUSSION 

4.1. EVALUATION OF THE PREDICTIVE MODELS 

The performance of the models developed in Table 5, RSM and ANN-MFO in the 
removal of  TP and TKN from mixed wastewater by aerobic treatment, was determined 
by using the statistical equations that evaluate the coefficients R, R2, adjusted R2, MSE, 
RMSE, MAE, and AAD [10]. 

T a b l e  5  

Statistical indices for TP  and TKN removal 

Parameter TP TKN 
ANN-MFO RSM ANN-MFO RSM 

R 0.9925 0.9069 0.9660 0.8534 
R2 0.9848 0.8146 0.9519 0.8269 
Adjusted R2 0.9866 0.7986 0.9566 0.8033 
MSE 3.456 28.4085 11.2285 38.9639 
RMSE 1.8590 5.3299 3.3509 6.2421 
MAE 5.3523 9.5159 2.0935 9.8653 
AAD 8.8023 21.5038 6.9959 26.1884 



134 C. SANCHEZ-SANCHEZ  et al. 

For TP removal, better operation was achieved using ANN-MFO compared to RSM 
for all the statistical parameters estimated. This modeling strategy produced a better 
performance of the ANN-MFO by obtaining an MSE of 3.456, compared to an error of 
28.408 found in the RSM model. In the case of TKN removal, the RSM model gave 
a moderate performance, shown by analyzing the statistical indices and the relevance of 
the ANN-MFO model R2 (0.9519) compared to RSM R2 (0.8269). In addition, the ANN- 
-MFO model shows lower error rates, indicating the superiority of the neural model over 
the RSM statistical model [18]. 

4.2. EFFECTS OF THE FACTORS ON TP AND TKN REMOVAL EFFICIENCY 

The effect of different factors was evaluated in an aerobic granular system devel-
oped in-situ for mixed wastewater treatment. The removal efficiencies shown in Fig. 4 
are also due to the predominant species developed under the diverse operational strate-
gies applied to the system. The latter is thanks to selection pressures present in the bio-
logical medium such as the hydrodynamic shear strength in the water, which depends on 
the volume of liquid in the tank and the AR applied to that volume. Figures 4c and 4f show 
that the applications of operational strategies where lower values of AR and CT and high 
values of VER are established improves the removal efficiency of TKN in the AGS sys-
tem. These results are similar to those reported by Priyanka et al [19], which evaluated 
simultaneous nitrification and denitrification-SBR. They reported that optimum VER 
(70%), CT (0.2 day), and intermittent minimum aeration through anaerobic/oxic/anoxic 
mode achieved a TKN removal efficiency of 89.6±1.1%. 

Various studies reported the TP and TKN removal efficiencies achieved using different 
operating strategies and configuration mechanisms in AGS systems. Most studies obtained 
a removal efficiency higher than 80% under AR between 1.7 and 2.5 dm3/min and a VER 
equal to 50% [20, 21]. In this regard, the operational factors evaluated in this study are es-
sential for effective N removal in AGS systems. Meanwhile, the P removal efficiencies re-
ported were limited, since only ca. 40% of the total studies reported TP removal values, 
which were less than 50% on average for mixed wastewater treatment [22, 23]. 

On the other hand, the low PT removal efficiency obtained in this study under any 
operating strategy applied may be due to the influence of other factors such as the DO 
concentration from high aeration velocity or short CT, which prevented the growth of 
phosphorus-accumulating organisms (PAOs) responsible for P degradation. 

These organisms are inhibited since they need relatively high residence times and 
low DO concentrations to develop [24, 25]. The high TKN removal efficiency in com-
parison to TP was due to a very effective nitrification thanks to the long aerobic phase 
inside the granules. However, the limited anoxic phase applied did not achieve adequate 
denitrification due to the low growth rate of the denitrifying bacteria. This was corrob-
orated by the nitrite and nitrate concentrations obtained in the experimental measure-
ments. The AGS system in this study was operated under the anaerobic/oxic (A/O) mode 
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where the oxic stage was more than 90% of the CT under high aeration rates in some of 
the applied configurations. 

5. CONCLUSIONS 

RSM modeling proved to have limitations in simulating the treatment of an aerobic 
granular sludge process for removing TP and NKT; since the statistical indices show 
a restricted performance for this study, this technique provides 3D graphs to interpret 
the influence of the main parameters for this process. Neural networks coupled with 
metaheuristic algorithms like MFO can effectively model highly nonlinear systems such 
as aerobic granulation systems for mixed wastewater treatment with an enhanced ad-
justment as the statistical method used. However, suitable operating ranges of VER need 
to be established according to the type of pollutant to be treated. Finally, the competition 
between heterotrophic and nitrifying bacteria resulted in a considerable decrease of ni-
trifying bacteria in the aerobic zone and, consequently, a lower TKN removal efficiency. 
Therefore, the behavior of the AGS process needs to be studied further when the A/O 
modes of operation are modified due to the operating velocities applied. 
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