Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Designing individualized medical devices requires the collection of anthropometric data from the patient. This can be done by using the 3D scanning process. Despite many advantages, it has significant drawbacks, limiting the suitability of its use for many types of medical devices. This paper presents the design of measuring station that allows increasing the quality of the anthropometric data obtained in the scanning process of human limbs. The accuracy and repeatability of the data obtained on the station was presented and compared to reference scans. Moreover, owing to the automation of certain activities in the scanning process, operating the device requires the operator to have much lower competencies and workload.
Wydawca
Rocznik
Tom
Strony
220--228
Opis fizyczny
Bibliogr. 21 poz., fig., tab.
Twórcy
autor
- Poznan University of Technology, Chair of Production Engineering and Management, Poznan, Poland
autor
- Poznan University of Technology, Chair of Production Engineering and Management, Poznan, Poland
autor
- Poznan University of Technology, Chair of Production Engineering and Management, Poznan, Poland
autor
- Poznan University of Technology, Chair of Production Engineering and Management, Poznan, Poland
Bibliografia
- 1. Spahiu T., Shehi E., Piperi E., Athropometric studies: Advanced 3D method for taking anthropometric data in Albania. International Journal of Innovative Research in Science, Engineering and Technology, 4(4), 2015, 2136-2142, https://doi.org/10.15680/ IJIRSET.2015.0404065.
- 2. Phoebe R. Apeagyei, Application of 3D body scanning technology to human measurment for clothing fit. International Journal of Digital Content Technology and its Applications, 4(7), 2010, 58-68, https://doi.org/10.4156/jdcta.vol4.issue7.6.
- 3. Kopecky M., Krejcovsky L., Svarc M., Antropometric Measuring tools and methodology for the measurment of anthropometric parameters. Palacky University, Olomouc 2014.
- 4. Daanen H.A.M, Ter Haar F.B., 3D whole body scanners revisited. Displays, 34(4), 2013, 270-275, https://doi.org/10.1016/j.displa.2013.08.011.
- 5. Khan D., Shirazi M., Kim M.Y., Single shot laser speckle based 3D acquisition system for medical applications. Optical and Lasers in Engineering, 105, 2018, 43-53. https://doi.org/10.1016/j.optlaseng.2018.01.001.
- 6. Bianco G., Gallo A., Bruno F., Muzzupappa M., A comparative analysis between active and passive techniques for underwater 3D reconstruction of close-range objects. Sensor, 13, 2013, 11007- 11031, https://doi.org/10.3390/s130811007.
- 7. Clarke T.A., Ellis T.J., Robson S., High accuracy 3-D measurement using multiple camera views. IEE Colloquium Digest No. 1994/054.
- 8. Kuczko W., Ptaszyński W., Wichniarek R., Górski F., Application of close range photogrammetry in solid body reverse engineering. Computer aided designing, engineering, manufacturing and data analysis: Selected problems, 2013, 142-150.
- 9. Percoco G.: Digital close range photogrammetry for 3D body scanning for custom-made garments. The Photogrammetric Record, 26(133), 73–90 (March 2011).
- 10. Spahiu T., Kacani J., Shehi E., Piperi E., 3D Body scanning technique for anthropometric measurements and custom clothing designing. International Conference Developing Third Activities in Universities, Albania 2014, https://doi. org/10.13140/2.1.1927.2484.
- 11. Ratajczyk E.: Współrzędnościowa technika pomiarowa. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1994.
- 12. Daanen H.A.M., Ter Haar F.B.: 3D whole body scanners revisited. Displays 34, 2013, 270-275.
- 13.Jun-Ming Lu, Mao-Jiun J. Wang; Automated anthropometric data collection using 3D whole body scanners. Expert Systems with Applications 35, 2008, 407-414.
- 14. 3D scanning market analysis by product (laser scanner, structured light scanner, optical scanner), by range (short range, medium range, long range), by application, and segment forecasts, 2018–2025, Grand View Research, Report ID: 978-1-68038-334-8.
- 15. Gühring J.: Dense 3-D surface acquisition by structured light using off-the-shelf components. Photonics West, Videometrics VII, Vol. 4309, SPIE, San Jose, USA, 2001.
- 16. Zawadzki, P., Żywicki, K.,: Smart product design and production control for effective mass customization in the Industry 4.0 concept. Manag. and Prod. Eng. Rev., 7(3), 2016, 105-112.
- 17. Anderson-Conell L., Ulrich P., Brannon E., A consumer-driven model for mass customization in the apparel market. Journal of Fashion Marketing and Management: An International Journal, 6(3), 240- 258, https://doi.org/10.1108/13612020210441346.
- 18. Baronio G., Volonghi P., Signoroni A., Concept and design of a 3D printed support to assist hand scanning for the realization of customized orthosis, applied bionics and biomechanics. 2017, Article ID 8171520, 8 pages. https://doi. org/10.1155/2017/8171520.
- 19. Volonghi P., Signoroni A., Baronio G., 3D scanning for hand orthotic applications: A comparative assessment between static and real-time solutions. Proceedings of 7th Int. Conf. on 3D Body Scanning Technologies, Lugano, Switzerland, 2016, 61-69, https://doi.org/10.15221/16.061.
- 20. Wierzbicka N., et al., Prototyping of individual ankle orthosis using additive manufacturing technologies. Advances in Science and Technology Research Journal, 11(3), 2017, 283–288, https://doi. org/10.12913/22998624/76070.
- 21. Basińska A., Studies on automated design of individualized wrist orthosis. Poznan University of Technology, 2019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a2b2c23-3eff-49e0-bf3f-28af581cf36d