Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Closure and post-closure periods in underground coal mines present specific risks that have to be handled with sound management practices in order to achieve sustainability within the mining sector. These risks may negatively affect the environment and result in hazards on the surface caused by phenomena occurring in the rock mass after mining operations. One of the hazards that has to be considered in the process of coal mine closure is gas, which is caused by methane emission after mining operations cease. This paper presents a forecast of methane emissions conducted within the framework of the Research Fund for Coal and Steel “MERIDA” project, using a model that was developed by the National Institute for the Environment and Industrial Hazards (INERIS) from France, and the Central Mining Institute (GIG) in Katowice, from Poland. This model enables the estimation of the volume of methane emitted into longwall goafs from relaxed undermined and overmined coal seams in order to assess in a further step the risk of methane emissions into the atmosphere from closed/sealed underground coal mines. For a critical analysis of the forecasted methane emissions into the longwall goafs, the results obtained with this model were compared with a gas decline curve generated for longwall goafs from closed/sealed underground coal mines in Australia, where long term full range data was available. The results of the analysis allowed the forecasted emissions and, thus, the accuracy of the model to be validated. The forecast was developed in the “Anna” coal mine, property of the PGG Company, which is located in the southern part of the Upper Silesian region in the south of Poland, near the border with the Czech Republic, and that is undergoing a closure process.
Wydawca
Czasopismo
Rocznik
Tom
Strony
184--194
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
- Główny Instytut Górnictwa (Central Mining Institute), Plac Gwarków 1, 40-166, Katowice, Poland
autor
- Główny Instytut Górnictwa (Central Mining Institute), Plac Gwarków 1, 40-166, Katowice, Poland
Bibliografia
- 1. Australian Department of Industry Tourism and Resources (2006). Mine closure and completion. Queensland government, Australia. Retrieved November 9, 2017, from http://www.minerals.org.au/file_upload/files/resources/enduring_value/mine_closure.pdf.
- 2. Besnard, K., & Pokryszka, Z. (2005). Gases emission monitoring in a post-mining content. Paper presented at the Actes du Colloque international Apres-mine 2005, November 16-17, Nancy, France.
- 3. Bondaruk, J. (2013). Management of mine water discharges to mitigate environmental risks for post-mining period (MANAGER). Retrieved November 9, 2017, from http://manager.gig.eu.
- 4. Broughton, P. (2014). Developing approaches to the control of risk from abandoned mine entries. 9th safety seminar, safety managing the challenge of change (pp. 47-61). Sheffield: The Midland Institute of Mining Engineers.
- 5. Cote, M., Collings, R., Pilcher, R. C., Talkington, C., & Franklin, P. (2004). Methane emissions from abandoned coal mines in the United States: Emission inventory methodology and 1990-2002 emissions estimates. U.S. Environmental Protection Agency. Retrieved November 9, 2017, from http://www.epa.gov/coalbed/docs/amm_final_report.pdf.
- 6. Cowan, J., Mackasey, W. R., & Robertson, W. O. (2010). The policy framework in Canada for mine closure and management of long-term liabilities. Canada: National Orphaned - Abandoned Mines Initiative. Retrieved November 9, 2017, from http://www.abandonedmines.org/pdfs/PolicyFrameworkCanforMinClosureandMgmtLiabilities.pdf.
- 7. Didier, C. (2009). Postmining management in France: Situation and perspectives. Risk Analysis, 29(10), 1347-1354. http://doi.org/10.1111/j.1539-6924.2009.01258.x.
- 8. Directorate-General for Research and Innovation, European Commission (2012). Prediction and monitoring of subsidence hazards above coal mines (Presidence) (Final report, EUR 25097) http://doi.org/10.2777/3356.
- 9. Directorate-General for Research and Innovation, European Commission (2013). Flooding management for underground coal mines considering regional mining networks (Flominet) (Final report, EUR 25905) http://doi.org/10.2777/94695.
- 10. Durucan, S. coordinator. (1995). Environmental simulation and impact assessment system for the mining Industry (ESIAS). Directorate-General for Research and Innovation. European Commission.
- 11. Dvořaček, J., & Slivka, V. (2004). Environmental and safety problems of Ostrava-Karvina district. Zeszyty Naukowe Politechniki Śląkiej Seria Gornictwo, 260, 551-558.
- 12. European Commission (2013). Strategic implementation plan for the european innovation partnership on raw materials. Retrieved November 9, 2017, from http://ec.europa.eu/enterprise/policies/raw-materials/files/docs/eip-sip-part1_en.pdf.
- 13. Franklin, P., Scheehle, E., Collings, R. C., Cote, M. M., & Pilcher, R. C. (2004). Proposed methodology for estimating emission inventories from abandoned coal mines. 2006 IPCC guidelines for national greenhouse gas inventories fourth authors/experts Meeting: Energy (28-30 september 2004): Vol. 2. (October 2004), 64. Retrieved November 9, 2017, from http://www.epa.gov/coalbed/docs/methodology_abandoned_coalmines.pdf%255Cn http://www.ipcc-nggip.iges.or.jp/meeting/meeting.html%255Cn http://www.ipcc-nggip.iges.or.jp/meeting/pdfiles/List_of_Participants_Energy.pdf.
- 14. Heikkinen, P. M., Noras, P., & Salminen, R. (Eds.). (2008). Mine closure Handbook: Environmental techniques for the extractive industries. Espoo, Finland. Retrieved November 9, 2017, from http://arkisto.gtk.fi/ej/ej74.pdf.
- 15. Heitfeld, M., Rosner, P., Muhlenkamp, M., & Sahl, H. (2004). Bergschaden im Erkelenzer Steinkohlenrevier. Altbergbaukolloquium (pp. 281-295). (Montanuniversitat Leoben).
- 16. Kowalski, A. (Ed.). (2000). Eksploatacja górnicza, a ochrona powierzchni. Doświadczenia z wałbrzyskich kopalń. [Mining exploitation versus surface protection. Experiences from the Wałbrzych mines]. Katowice: Główny Instytut Górnictwa.
- 17. Krause, E. (2008a). Prognozowanie wydzielania metanu do rejonów poeksploatacyjnych kopalń czynnych i likwidowanych przez zatopienie. [Forecasting of methane emissions to the gob areas of operating coal mines and those already liquidated by flooding]. Zeszyty Naukowe Politechniki Śląskiej. Seria Górnictwo, 283, 129-137.
- 18. Krause, E. (2008b). Technologie odmetanowania wpływające na poprawę bezpieczeństwa eksploatacji oraz ograniczenie emisji metanu do atmosfery. [Technologies of degasification affecting safety of coal exploitation and reduction of methane emissions to the atmosphere]. Zeszyty Naukowe Politechniki Śląskiej. Seria Górnictwo, 283, 113-128.
- 19. Krause, E., & Dziurzyński, W. (2015). Projektowanie eksploatacji pokładów węgla kamiennego w warunkach skojarzonego zagrożenia metanowo-pożarowego. [Designing the exploitation of coal seams in conditions of combined methane-fire hazard]. Katowice: Główny Instytut Górnictwa.
- 20. Krause, E., & Pokryszka, Z. (2013). Investigations on methane emission from flooded workings of closed coal mines. Journal of Sustainable Mining, 12(2), 40-45. http://doi.org/10.7424/jsm130206.
- 21. Krause, E., & Łukowicz, K. (2000). Dynamiczna prognoza metanowości bezwzględnej ścian (poradnik techniczny) [Dynamic prediction of absolute methane bearing capacity of the longwalls (technical guide)]. Vol. 14. Instrukcja Głównego Instytutu Górnictwa.
- 22. Krzemień, A., Krause, E., Wysocka, M., Koteras, A., Więckol-Ryk, A., Wagner, J., ... Helios, M. (2017). Management of environmental risks during and after mine closure (MERIDA). First annual report. Research Fund for coal and Steel Contract No. RFCR-CT-2015-20100004.
- 23. Krzemień, A., Sanchez, A. S., Fernandez, P. R., Zimmermann, K., & Gonzalez Coto, F. (2016). Towards sustainability in underground coal mine closure contexts: A methodology proposal for environmental risk management. Journal of Cleaner Production, 139, 1044-1056. http://doi.org/10.1016/j.jclepro.2016.08.149.
- 24. Laurence, D. (2011). Establishing a sustainable mining operation: An overview. Journal of Cleaner Production, 19(2-3), 278-284. http://doi.org/10.1016/j.jclepro.2010.08.019.
- 25. Lunarzewski, L. (2010). Coal mine goaf gas predictor. In N. Aziz (Vol. Ed.), 10th. Underground coal operators' conference: Vol. 2010, (pp. 247-256). University of Wollongong & the Australasian Institute of Mining and Metallurgy Retrieved November 9, 2017, from ro.uow.edu.au/cgi/viewcontent.cgi?article=1969&context=coal.
- 26. Pastor, J., Klinger, C., & Talbot, C. (2008). Optimisation of mine water discharge by monitoring and modelling of geochemical processes and development of measures to protect aquifers and active mining areas from mine water contamination (WATERCHEM). Directorate-General for Research and Innovation. European Commission.
- 27. Pokryszka, Z., & Tauziede, C. (2000). Evaluation of gas emission from closed mines surface to atmosphere. Proceedings of the 6th International Conference on Environmental Issues and Management of Waste in Energy and Mineral Production (pp. 327-329). Calgary: Balkema.
- 28. Pokryszka, Z., Tauziede, C., Lagny, C., Guise, Y., Gobillot, R., Planchenault, J., et al. (2005). Gas migration from closed coal mines to the surface. Risk assesment methodology and prevention means. Symposium Post-mining 2005, November 16-17, Nancy, France. Retrieved November 9, 2017, from https://www.researchgate.net/publication/228804171_Gas_migration_from_closed_coal_mines_to_the_surface_risk_assessment_methodology_and_prevention_means.
- 29. Pulles, W. (2008). Best practice guideline G5: Water management aspects for mine closure. Department of Water Affairs and Forestry, Republic of South Africa Retrieved November 9, 2017, from http://www.bullion.org.za/documents/g5-watermanagementaspects-for-mine-closure.pdf.
- 30. Sawatsky, L. (2012). Perpetual Maintenance Schemes not a viable option. CIM Magazine, 3(7), 48-49.
- 31. Sechman, H., Kotarba, M. J., Fiszer, J., & Dzieniewicz, M. (2013). Distribution of methane and carbon dioxide concentrations in the near-surface zone and their genetic characterization at the abandoned “Nowa Ruda” coal mine (Lower Silesian Coal Basin, SW Poland). International Journal of Coal Geology, 116-117, 1-16. http://doi.org/10.1016/j.coal.2013.05.005.
- 32. Szlązak, N., Obracaj, D., & Borowski, M. (2002). Zagrożenie gazami kopalnianymi w obiektach budowlanych na terenach zlikwidowanych kopalń podziemnych. [Mine gas hazard in buildings in the areas of liquidated underground mines]. Przegląd Górniczy, 58(7-8), 42-48.
- 33. Tauziede, C., Pokryszka, Z., & Barriere, J. P. (2002). Risk assessment of surface emission of gas from abandoned coal mines in France and techniques of prevention. Transactions Institution Mining Metallurgy Section A-Mining Technology, 111, 192-196.
- 34. U.S. Environmental Protection Agency (2008). U.S. Abandoned coal mine methane recovery project opportunities. EPA430-R-08-002.
- 35. U.S. Environmental Protection Agency (2009a). Coal mine methane recovery: A primer. EPA-430-R-09-013. Retrieved November 9, 2017, from http://www.epa.gov/cmop/docs/cmm_primer.pdf.
- 36. U.S. Environmental Protection Agency (2009b). Identifying opportunities for methane recovery at U.S. Coal Mines: Underground coal mines profiles of selected gassy underground coal mines. EPA 430-K-04-003.
- 37. Wrona, P. (2017). The influence of climate change on CO2 and CH4 concentration near closed shaft - numerical simulations. Archives of Mining Sciences, 62(3), 639-652. http://doi.org/10.1515/amsc-2017-0046.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a2a8379-3379-49c3-83c2-9479ebdb0c99