PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The BEM-FDM model of thermal processes proceeding in the domain of the human finger

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The problem of the numerical modeling of thermal processes proceeding in the non-homogeneous domain of the human finger is discussed. The domain considered constitutes the assembling of soft and bone tissues and the system of supplying blood vessels (arteries and veins). The mathematical description of the process analyzed corresponds to the so-called vascular models. Methods: At the stage of numerical modeling the algorithm being the composition of the boundary element method (BEM) and the finite difference method (FDM) is applied. Results: The algorithm presented allows one to determine the steady state temperature field in the finger domain in natural convection conditions. To verify the effectiveness and exactness of the method of the problem solution, the thermal imaging measurements of the finger surface temperature have been done. Conclusions: The compatibility of numerical and experimental results (the natural convection conditions) has proved to be quite satisfactory. It is possible to use the algorithm proposed for the modeling of thermal processes proceeding in the conditions of low or high ambient temperatures and the big values of heat transfer coefficients. The impact of protective clothing on the temperature field in the domain of the finger can also be analyzed.
Rocznik
Strony
85--96
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
  • Silesian University of Technology, Gliwice, Poland
autor
  • Higher School of Labour Safety Management, Katowice, Poland
autor
  • Manchester Metropolitan University, Manchester, UK
  • Silesian University of Technology, Gliwice, Poland
Bibliografia
  • [1] AVOLIO A.P., Multi-branched model of the human arterial system, Med. Biol. Eng. Comput., 1980, Vol. 18, 709–718.
  • [2] BREBBIA C.A., TELLES J.C.F., WRÓBEL L.C., Boundary element techniques, Springer-Verlag, Berlin, New York, 1984.
  • [3] FIALA D., LOMAS K.J., M. STOHRER M., Computer predictions of human thermoregulatory and temperature responses to a wide range of environment conditions, Int. J. Biometeorol., 2001, Vol. 45, 143–159.
  • [4] FERREIRA M.S., YANAGIHARA J.I., A transient threedimensional heat transfer model of the human body, Int. Commun. Heat Mass., 2009, Vol. 36, 718–724.
  • [5] HE Y., HIMENO R., LIU H., YOKOTA H., SUN Z.G., Finite element numerical analysis of blood flow and temperature distribution in three-dimensional image-based human finger, J. Heat Fluid Flow, 2008, Vol. 18(7/8), 932–963.
  • [6] HUANG H.W., CHAN C.L., ROEMER R.B., Analytical solutions of Pennes bioheat transfer equation with a blood vessel, J. Biomech. Eng., 1994, Vol. 116, 208–212.
  • [7] KARAKI W., GHADDAR N., GHALI K., KUKLANE K., HOLMÉR I., VANGGAARD L., Human thermal response with improved AVA modeling of the digits, Int. J. Therm. Sci., 2013, Vol. 67, 41–52.
  • [8] MAJCHRZAK E., Application of different variants of the BEM in numerical modeling of bioheat transfer processes, MCB: Mol Cell Biomech., 2013, Vol. 10(3), 201–232.
  • [9] MAJCHRZAK E., MOCHNACKI B., Numerical model of heat transfer between blood vessel and biological tissue, CAMES, 1999, Vol. 6, 439–447.
  • [10] MAJCHRZAK E., MOCHNACKI B., Sensitivity analysis and inverse problems in bio-heat transfer modelling, CAMES, 2006, Vol. 13, 85–108.
  • [11] MAJCHRZAK E., MOCHNACKI B., Numerical modeling of heat transfer between blood vessels (artery and vein) and biological tissue, IV European Conference on Computational Mechanics, Paris, France, CD-ROM Proceedings, 2009, 1–10.
  • [12] MAJCHRZAK E., MOCHNACKI B., DZIEWOŃSKI M., JASIŃSKI M., Numerical modelling of hyperthermia and hypothermia processes, Comp. Mater. Sci., 2011, Vol. 268–270, 257–262.
  • [13] MAJCHRZAK E., MOCHNACKI B., JASIŃSKI M., Numerical modelling of bioheat transfer in multi-layer skin tissue domain subjected to a flash fire, CFSM, 2003, Vol. 1–2, 1766–1770.
  • [14] MAJCHRZAK E., PARUCH M., Identification of electromagnetic field parameters assuring the cancer destruction during hyperthermia treatment, Inverse Probl. Eng., 2011, Vol. 19(1), 45–58.
  • [15] MAJCHRZAK E., TARASEK D., Numerical modeling of heat transfer in a single blood vessel and surrounding biological tissue, Sci. Res. Inst. Math. Comput. Sci. (Czest Univ Technol, Online), 2010, Vol. 2(9), 145–152.
  • [16] MAJCHRZAK E., TARASEK D., Numerical analysis of heat transfer in countercurrent blood flow and biological tissue, Sci. Res. Inst. Math. Comput. Sci. (Czest Univ Technol, Online), 2011, Vol. 2(10), 143–154.
  • [17] MOCHNACKI B., PIASECKA BELKHAYAT A., Numerical modeling of skin tissue heating using the interval finite difference method, MCB: Mol Cell Biomech., 2013, Vol. 10(3), 233–244.
  • [18] NOWAK A.J., Chapter 3: Solving linear heat conduction problems by the multiple reciprocity boundary element method, [in:] Boundary element methods in heat transfer, L.C. Wróbel, C.A. Brebbia (eds.), Computational Mechanics Publications, WIT Press, Southampton, Boston, 1992, 63–132.
  • [19] PARUCH M., MAJCHRZAK E., Identification of tumor region parameters using evolutionary algorithm and multiple reciprocity boundary element method, Eng. Appl. Artif. Intel., 2007, Vol. 20, 647–655.
  • [20] PENNES H.H., Analysis of tissue and arterial blood temperatures in the resting human forearm, J. Appl. Physiol., 1948, Vol. l, 93–122.
  • [21] RIDA M., KARAKI W., GHADDAR N., GHALI K., HOBALLAH J., A new mathematical model to simulate AVA cold-induced vasodilatation reaction to local cooling, Int. J. Biometeorol., 2014, DOI: 10.1007/s00484-014-0792-x.
  • [22] SALLOUM M., GHADDAR N., GHALI K., A new transient bioheat model of the human body and its integration to clothing models, Int. J. Therm. Sci., 2007, Vol. 46, 371–384.
  • [23] SCHWARZ M., KRUEGER M.W., BUSCH H.J., BENK CH., HEILMANN C., Model-based assessment of tissue perfusion and temperature in deep hypothermic patients, IEEE Trans Biomed. Eng., 2010, Vol. 57, 1577–1586.
  • [24] SHAO H.W., HE Y., MU L.Z., Numerical analysis of dynamic temperature in response to different levels of reactive hyperemia in a three-dimensional image-based hand model, Computer Methods in Biomech. Biomed. Engin., 2014, Vol. 17, 865–874.
  • [25] SHITZER A., BELLOMO S., STROSCHEIN L.A., GONZALEZ R.R., PANDOLF K.B., Simulation of cold-stressed finger including the effect of wind, gloves, and cold-induced vasodilatation, J. Biomech. Eng., 1998, Vol. 120, 389–394.
  • [26] SHITZER A., STROSCHEIN L.A., VITAL P., GONZALEZ R.R., PANDOLF K.B., Numerical analysis of an extremity in a cold environment including countercurrent arterio-venous heat exchange, J. Biomech. Eng., 1997, Vol. 119, 179–186.
  • [27] STAŃCZYK M., TELEGA J.J., Modelling of heat transfer in biomechanics a review. Part I. Soft tissues, Acta Bioeng. Biomech., 2002, Vol. 4(1), 31–61.
  • [28] STAŃCZYK M., TELEGA J.J., Modelling of heat transfer in biomechanics a review. Part II. Orthopaedics, Acta Bioeng. Biomech., 2002, Vol. 4(2), 3–33.
  • [29] STOLWIJK J.A.J., Mathematical model of thermoregulation, Physiological and Behavioral Temperature Regulation, Charles C. Thomas Publishing Company, Illinois, 1970.
  • [30] SUN X., ECKELS S., ZHENG Z.C., An improved thermal model of the human body, HVAC&R Research, 2012, Vol. 18, 323–338.
  • [31] WISSLER E.H., Mathematical simulation of human thermal behavior using whole body models, Heat Mass. Tran. Med. Biol., Plenum Press, New York, 1985.
  • [32] XUE X., LIU J., Multi-scale modeling on human intravascular cooling to induce brain hypothermia via circle of Willis, Forsch Ingenieurwes, 2011, Vol. 75, 257–269.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a292a95-c7c3-453a-a2e3-be47490364e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.