Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Zanieczyszczenie gleby i roślin wybranymi metalami ciężkimi na terenie węzła kolejowego
Języki publikacji
Abstrakty
Heavy metal (As, Mn, Ni, Sn, Ti) concentrations were determined in soil and plant samples collected in different areas of the railway junction Iława Główna, Poland. Soil and plant samples were collected in four functional parts of the junction, i.e. the loading ramp, main track within the platform area, rolling stock cleaning bay and the railway siding. Four plant species occurring in relatively higher abundance were selected for heavy metals analysis, although in the loading ramp and platform areas only one species could be collected in the amount which makes chemical analysis possible. The selected species included three perennials (Daucus carota, Pastinaca sativa and Taraxacum offi cinale) and one annual plant (Sonchus oleraceus). The entire area of the railway junction showed elevated concentrations of heavy metals when compared to the control level. It was most pronounced for the platform area and railway siding. The concentration of arsenic, manganese and nickel in plants growing in these parts of the junction exceeded the toxic level. The highest contamination of soil and plants found in the platform area suggested advanced emission process of the analyzed metals from wheel and track abrasion. Literature review showed that the concentration of the investigated metals in soil was generally higher than that found in centers of cities and along traffi c roads proving that the railway is an important linear source of soil contamination.
W pracy przedstawiono wyniki badań dotyczące zawartości wybranych metali ciężkich (As, Mn, Ni, Sn, Ti) w glebie i roślinach na obszarze węzła kolejowego Iława Główna. Próby gleby i roślin pobierano w czterech częściach węzła, a mianowicie na rampie załadowczej, torowisku głównym, myjni i bocznicy kolejowej. Na całym obszarze węzła kolejowego stwierdzono podwyższone stężenia metali ciężkich w porównaniu z terenem kontrolnym. Najwyższe stężenia stwierdzano na torowisku głównym i bocznicy kolejowej. Stężenie arsenu, manganu i niklu w roślinach występujących na tym obszarze przekracza poziom toksyczny. Najwyższe zanieczyszczenie gleby i roślin stwierdzane na torowisku wskazuje na występowanie procesów emisji metali spowodowanych ścieraniem kół i szyn. Porównanie z danymi literaturowymi wskazuje, że stężenie badanych metali w glebie jest większe niż w glebach centów miast i wzdłuż drogowych szlaków komunikacyjnych, co dowodzi, że linie kolejowe stanowią istotne liniowe źródło zanieczyszczenia gleby.
Czasopismo
Rocznik
Tom
Strony
35--42
Opis fizyczny
Bibliogr. 54 poz., tab.
Twórcy
autor
- Institute for Ecology of Industrial Areas, Poland
- Częstochowa University of Technology, Poland Faculty of Environmental Engineering and Biotechnology
autor
- University of Warsaw, Poland Institute of Botany
autor
- University of Warsaw, Poland Institute of Botany
autor
- University of Warsaw, Poland Institute of Botany
autor
- University of Warsaw, Poland Institute of Botany
- The Jan Kochanowski University in Kielce, Poland Department of Environmental Protection and Modelling
Bibliografia
- [1] Adriano, D.C. (1986). Trace elements in the terrestrial environment, New York: Springer-Verlag, 533, New York 1986.
- [2] ATSDR (2007). Toxicological profile for arsenic, Atlanta, GA: US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Atlanta 2007.
- [3] Benson, L.M., Porter, E.K. & Peterson, P.J. (1982). Arsenic accumulation, tolerance, and genotypic variation in plants on arsenical mine wastes in south-west England, Journal of Plant Nutrition, 3, pp. 655-666.
- [4] Birke, M. & Rauch, U. (2000). Urban geochemistry: Investigations in the Berlin metropolitan area, Geochemistry and Health, 22, pp. 233-248.
- [5] Bukowiecki, N., Gehrig, R., Hill, M., Lienemann, B., Zwicky, C.N. & Buchmann, B. (2007). Iron, manganese and copper emitted by cargo and passenger trains in Zurich (Switzerland): Sizesegregated mass concentrations in ambient air, Atmospheric Environment, 41, pp. 878-889.
- [6] Chillrud, S.N., Grass, D., Ross, J.M., Coulibaly, D., Slavkovich, V., Epstein, D., et al. (2005). Steel dust in the New York City subway system as a source of manganese, chromium and iron exposures for transit workers, Journal of Urban Health, 82, pp. 33-42.
- [7] Cullen, W.R. & Reimer, K.J. (1989). Arsenic speciation in the environment, Chemical Reviews, 89, pp. 713-764.
- [8] Diatta, J.B., Grzebisz, W. & Apolinarska, K. (2003). A study of soil pollution by heavy metals in the city of Poznań (Poland) using dandelion (Taraxacum officinale WEB) as a bioindicator, Electronic Journal of Polish Agricultural Universities, 6, 2.
- [9] Djingova, R., Kuleff, I. & Markert, B. (2004). Chemical fingerprinting of plants, Ecological Research, 19, pp. 3-11.
- [10] Eckel, W.P. & Jacob, T.A. (1988). Ambient levels of 24 dissolved metals in U.S. surface and ground waters, National Meeting American Chemical Society Division of Environmental Chemistry, 28, pp. 371-372.
- [11] EHC, Environmental Health Criteria. (1980). 15 Tin and Organotin Compounds. Geneva, World Health Organization, Geneva 1980.
- [12] EHC, Environmental Health Criteria. (1982). 24 Titanium Dioxide, Geneva, World Health Organization, Geneva 1982.
- [13] Enterline, P.E., Day, R. & Marsh, G.M. (1995). Cancers related to exposure to arsenic at a copper smelter, Occupational and Environmental Medicine, 52, pp. 28-32.
- [14] Environment Agency. (2009a). Contaminants in soil: updated collation of toxicological data and intake values for humans. Inorganic arsenic, Science Report SC050021/SR TOX1. Bristol: Environment Agency, Bristol 2009a.
- [15] Environment Agency. (2009b). Contaminants in soil: updated collation of toxicological data and intake values for humans. Nickel, Science Report SC050021/SR TOX8. Bristol: Environment Agency, Bristol 2009b.
- [16] Eriksson, J.E. (2001). Concentrations of 61 trace elements in sewage sludge, farmyard manure, mineral fertilizers, precipitation and in oil and crops, Swedish EPA Rep 5159, Stockholm 2001.
- [17] Fayiga, A.O., Ma, L.Q. & Zhou, Q. (2007). Effects of plant arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil, Environmental Pollution, 147, pp. 737-742
- [18] Gehrig, R., Hill, M., Lienemann, P., Zwicky, C.N., Bukowiecki, N., Weingartner, E., Baltensperger, U. & Buchmann, B. (2007). Contribution of railway traffic to local PM10 concentrations in Switzerland, Atmopheric Environment, 41, pp. 923-933.
- [19] Grieve, D.G., Dwyer-Joyce, R.S. & Beynon, J.H. (2001). Abrasive wear of railway track by solid contaminants. Proceedings of the Institution of Mechanical Engineering Part F-Journal of Rail and Rapid Transition, 215, pp. 193-205.
- [20] Horst, J.W. (1988). The Physiology of Manganese Toxicity. In: Graham R.D., Hannam R.J., Uren E.C. (Eds) Manganese in Soils and Plants. Kluver Academic Publishers, Dordrecht, 175-188, Dordrecht 1988.
- [21] Jabłońska-Czapla, M., Szopa, S., Rosik-Dulewska, Cz. (2014). Impact of Mining Dump on the Accumulation and Mobility of Metals in the Bytomka River Sediments, Archives of Environmental Protection, 40 (2), pp. 3-19.
- [22] Joselow, M.M., Tobias, E., Koehler, R., Coleman, S., Bogden, J. & Gause, D. (1978). Manganese pollution in the city environment and its relationship to traffic density, American Journal of Public Health, 68, pp. 557-560.
- [23] Kabata-Pendias, A. & Dudka, S. (1991). Trace metal contents of Taraxacum officinale (dandelion) as a convenient environmental indicator, Environmental Geochemistry and Health, 13, pp. 108-113.
- [24] Kabata-Pendias, A. & Krakowiak, A. (1997). Useful phytoindicator (Dandelion) for trace metal Pollution, The 5-th International Conference Processes, Transport, Fate and Effects of Silver in the Environment, Canada, September 28 - October 1, pp. 145-149.
- [25] Kabata-Pendias, A. & Pendias, H. (1999). Biogeochemistry of trace elements, Wydawnictwo Naukowe PWN, Warszawa 1999. (in Polish)
- [26] Kabata-Pendias, A. & Mukherjee, A.B. (2007). Trace Elements from Soil to Human, Springer-Verlag, Berlin 2007.
- [27] Kabata-Pendias, A. & Pendias, H. (2001). Trace Elements in Soils and Plants, Third Edition, CRC Press LLC, Boca Raton 2001.
- [28] Key to Metals. (2009). Cast Nonferrous: Tin and Tin Alloys, (http://www.keytometals.com/Article26. htm (24.07.2012))
- [29] Kuleff, I. & Djingova, R. (1984). The dandelion (Taraxacum officinale) - A monitor for environmental pollution? Water, Air and Soil Pollution, 21, pp. 77-85.
- [30] Larsen, E.H., Moseholm, L. & Nielsen, M.M. (1992). Atmospheric deposition of trace elements around point sources and human health risk assessment. II: uptake of arsenic and chromium by vegetables grown near a wood preservation factory, Science of The Total Environment, 126, pp. 263-275.
- [31] Leggett, R.W. (2011). A biokinetic model for manganese, Science of The Total Environment, 409, pp. 4179-4186.
- [32] Ligocki, M., Tarasewicz, Z., Zygmunt, A. & Aniśko, M. (2011). The common dandelion (Taraxacum officinale) as an indicator of anthropogenic toxic metal pollution of environment, Acta Scientiarum Polonorum Zootechnica, 10, pp. 73-82.
- [33] Liu, H., Chen, L.P., Ai, Y.W., Yang, X., Yu, Y.H. & Zuo, Y.B. (2009). Heavy metal contamination in soil alongside mountain railway in Sichuan, China, Environmental Monitoring and Assessment, 152, pp. 25-33.
- [34] Loranger, S., Zayed, J. & Forget, E. (1994a). Manganese contamination in Montreal in relation with traffic density, Water, Air, & Soil Pollution, 74, pp. 385-396.
- [35] Loranger, S., Demers, G., Kennedy, G., Forget, E. & Zayed, J. (1994b). The pigeon (Columba livia) as a monitor for manganese contamination from motor vehicles, Archives of Environmental Contamination and Toxicology, 27, pp. 311-317.
- [36] Lytle, C.M, Smith, B.N. & McKinnon, C.Z. (1995). Manganese accumulation along Utah roadways: a possible indication of motor vehicle exhaust pollution, Journal Science of the Total Environment, 162, 2-3, pp. 105-109.
- [37] Malawska, M. & Wiłkomirski, B. (2001). An analysis of soil and plant (Taraxacum officinale) contamination with heavy metals and polycyclic aromatic hydrocarbons (PAHs) in the area of the railway junction Iława Główna, Poland, Water, Air, and Soil Pollution, 127, pp. 339-349.
- [38] Malizia, D., Giuliano, A., Ortaggi, G. & Masotti, A. (2012). Common plants as alternative analytical tools to monitor heavy metals in soil, Chemistry Central Journal, 6 (Suppl. 2), S6. (http://journal. chemistrycentral.com/content/6/S2/S6(14.01.2015))
- [39] Martin, I., De Burca, R. & Morgan, H. (2009). Soil Guideline Values for Inorganic Arsenic in Soil, Environment Agency, Bristol 2009.
- [40] MDEP (2003). Massachusetts Department of Environmental Protection. Best management practices for controlling exposure to soil during the development of rail trails. (http://www.mass.gov/dep/bwsc/ facts.htm (14.01.2015))
- [41] Merwin, I., Pruyne, P.T., Ebel, J.G., Manzell, K.L. & Lisk, D.J. (1994). Persistence, phytotoxicity and management of arsenic, lead and mercury residues in old orchard soils of New York State, Chemosphere, 29, pp. 1361-1367.
- [42] Murray, P., Ge, Y. & Hendershot, W. H. (2000). Evaluating three trace metal contaminated sites: a field and laboratory investigation, Environmental Pollution, 107, pp. 127-135.
- [43] Normandin, L., Kennedy, G. & Zayed, J. (1999). Potential of dandelion (Taraxacum officinale) as a bioindicator of manganese arising from the use of methylcyclopentadienyl manganese tricarbonyl in unleaded gasoline, The Science of the Total Environment, 239, pp. 165-171.
- [44] Official Journal of Law. (2002). No. 165, Clause 1359.
- [45] Pitten, F.-A., Muller, U.G., Konig, P., Schmidt, D., Thurow, K. & Kramer, A. (1999). Risk assessment of a former military base contaminated with organoarsenic-based warfare agents: uptake of arsenic by terrestrial plants, The Science of the Total Environment, 226, pp. 237-245.
- [46] Roels, H.A., Ghyselen, P., Buchet, J.P., Ceulemans, E. & Lauwerys, R.R. (1992). Assessment of the permissible exposure level to manganese in workers exposed to manganese dioxide dust, British Journal of Industrial Medicine, 49, pp. 25-34.
- [47] Rooney, C.P., Zhao, F.-J. & McGrath, S.P. (2007). Phytotoxicity of nickel in a range of European soils: Influence of soil properties, Ni solubility and speciation, Environmental Pollution, 145, pp. 596-605.
- [48] Shacklette, H.A.T. & Boerngen, J.G. (1984). Element concentration sin soils and other surficial materials of the conterminous United States, U.S. Geological Survey Professional Papers, 1270.
- [49] Smith, E., Smith, J. & Naidu, R. (2006). Distribution and nature of arsenic along former railway corridors of South Australia, Science of the Total Environment, 15, 363 (1-3), pp. 175-182.
- [50] Stokes, P.M., Campbell, P.G.C., Schroeder, W. H., et al. (1988). Manganese in the Canadian environment, Canada: National Research Council, 177.
- [51] Száková, J., Tlustoš, P., Goessler, W., Pokorný, T., Findenig, S. & Balík, J. (2011). The Effect of Soil Contamination Level and Plant Origin on Contents of Arsenic, Cadmium, Zinc, and Arsenic Compounds in Mentha Aquatica L., Archives of Environmental Protection, 37 (2), pp. 109-121.
- [52] Szczepocka, A. (2005). Kryteria oceny zanieczyszczeń gleb metalami ciężkimi, Zeszyty Naukowe SGSP, 32, pp. 13-27.
- [53] Wiłkomirski, B., Sudnik-Wójcikowska, B., Galera, H., Wierzbicka, M. & Malawska, M. (2011). Railway transportation as a serious source of organic and inorganic pollution, Water, Air and Soil Pollution, 218, pp. 333-345.
- [54] Yalcin, M.G., Battaloglu, R., Ilhan, S., Tümüklü, A. & Topuz, D. (2007). Heavy metal contamination along the Nigde-Adana highway, Turkey, Asian Journal of Chemistry, 19 (2), pp. 1506-1518.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a24c186-a4de-4ef5-8e6e-e27b0c735f53