Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the current research, a torsion of isotropic prismatic rods with elastic–plastic behavior under non-linear hardening behavior, such as Swift, Voce, and Ramberg-Osgood relations, is investigated with the method of fundamental solutions. Based on the Saint-Venant displacement assumption and deformation theory of plasticity for the stress-strain relation, the non-linear boundary value problem for the stress function is formulated. The purpose of the current research is study the elastic–plastic torsion problem with non-linear hardenings in a new simple form and solving the presented equations with the method of fundamental solutions and radial basis functions. The non-linear torsion problem is solved by means of the Picard iteration method. The proposed algorithm is based on solution of the linear Poisson equation at each iteration step.
Czasopismo
Rocznik
Tom
Strony
334--354
Opis fizyczny
Bibliogr. 44 poz., wykr.
Twórcy
autor
- Department of Mechanical Engineering, Eqbal Lahoori Institute of Higher Education, Mashhad, Iran
autor
- Institute of Applied Mechanics, Poznan University of Technology, Jana Pawła II 24, 60-965 Poznan, Poland
Bibliografia
- [1] Philip G, Hodge JR. Elastic-plastic torsion as a problem in nonlinear programming. Int J Solids Struct. 1967;3:989–99.
- [2] Ecsedi I. Some analytical solutions for saint-venant torsion of non-homogeneous cylindrical bars. Eur J Mech A/Solids. 2009;28:985–90.
- [3] Baniassadi M, Ghazavizadeh A, Rouhollah Rahmani R, Abrinia K. A novel semi-inverse solution method for elastoplastic torsion of heat treated rods. Meccanica. 2010;45:375–92.
- [4] Tsiatas GC, Katsikadelis JT. A new microstructure-dependent saint-venant torsion model based on a modified couple stress theory. European Journal of Mechanics A/Solids. 2011;30:741–7.
- [5] Fialko SY, Lumelskyy DE. On numerical realization of the problem of torsion and bending of prismatic bars of arbitrary cross section. J Math Sci. 2013;192(6):664–81.
- [6] Mukhtar FM, Al-Gahtani HJ. Application of radial basis functions to the problem of elasto-plastic torsion of prismatic bars. Appl Math Model. 2016;40:436–50.
- [7] Tsiatas GC, Babouskos NG. Elastic-plastic analysis of functionally graded bars under torsional loading. Compos Struct. 2017;176:254–67.
- [8] Beninato F, Foti D, Vacca VULS. 3D domain of rectangular cross-sections in r.c. subject to shear and torsion. Eng Struct. 2016;127:240–59.
- [9] Lee YT, Chen JT, Kuo SR. Semi-analytical approach for torsion problems of a circular bar containing multiple holes and/or cracks. Eng Fract Mech. 2019;219:106547.
- [10] Chen H, Gomez J, Pindera MJ. Saint Venant’s torsion of homogeneous and composite bars by the finite volume method. Compos Struct. 2020;242:112128.
- [11] Kupradze VD, Aleksidze MA. The method of functional equations for the approximate solution of certain boundary value problems. USSR Comput Math Math Phys. 1964;4:82–126.
- [12] Alves CJS, Leitao VMA. Crack analysis using an enriched MFS domain decomposition technique. Eng Anal Bound Elem. 2006;30(2006):160–6.
- [13] Fam GSA, Rashed YF. Dipoles formulation for the method of fundamental solutions applied to potential problems. Adv Eng Softw. 2007;38:1–8.
- [14] Fairweather G, Karageorghis A. The method of fundamental solutions for elliptic boundary value problems. Adv Comput Math. 1998;9:69–95.
- [15] Karageorghis A, Lesnic D, Marin L. A survey of applications of the MFS to inverse problems. Inverse Probl Sci Eng. 2011;19(3):309–36.
- [16] Kołodziej JA, Grabski JK. Many names of the Trefftz method. Eng Anal Bound Elem. 2018;96:169–78.
- [17] Cheng AHD, Hong Y. An overview of the method of fundamental solutions-solvability, uniqueness, convergence, and stability. Eng Anal Bound Elem. 2020;120:118–52.
- [18] Buhmann MD. Radial basis functions: theory and implementations. Cambridge: Cambridge University Press; 2004.
- [19] Chen W, Fu ZJ, Chen CS. Recent advances in radial basis function collocation methods. Berlin: Springer; 2014.
- [20] Golberg MA. The method of fundamental solutions for Poisson’s equation. Eng Anal Bound Elem. 1995;16:205–13.
- [21] Kolodziej JA, Grabski JK. Application of the method of fundamental solutions and the radial basis functions for viscous laminar flow in wavy channel. Eng Anal Bound Elem. 2015;57:58–65.
- [22] Grabski JK, Mierzwiczak M, Kołodziej JA. Application of the method of fundamental solutions and the radial basis functions for peristaltic flow analysis. Recent Adv Comput Mech. 2014;2014:379–86.
- [23] Grabski JK. A meshless procedure for analysis of fluid flow and heat transfer in an internally finned square duct. Heat Mass Transf. 2020;56(2):639–49.
- [24] Grabski JK, Kołodziej JA. Laminar fluid flow and heat transfer in an internally corrugated tube by means of the method of fundamental solutions and radial basis functions. Comput Math Appl. 2018;75(4):1413–33.
- [25] Grabski JK, Kołodziej JA. Laminar flow of a power-law fluid between corrugated plates. J Mech Mater Struct. 2016;11:23–40.
- [26] Grabski JK, Kołodziej JA. Analysis of Carreau fluid flow between corrugated plates. Comput Math Appl. 2016;72:1501–14.
- [27] Grabski JK. Numerical solution of non-Newtonian fluid flow and heat transfer problems in ducts with sharp corners by the modified method of fundamental solutions and radial basis function collocation. Eng Anal Bound Elem. 2019;109:143–52.
- [28] Kołodziej JA, Uściłowska A. Application of MFS for determination of effective thermal conductivity of unidirectional composites with linearly temperature dependent conductivity of constituents. Eng Anal Bound Elem. 2012;36:293–302.
- [29] Wang H, Qin Q-H, Kang YL. A new meshless method for steady-state heat conduction problems in anisotropic and inhomogeneous media. Arch Appl Mech. 2005;74:563–79.
- [30] Wang H, Qin Q-H, Kang YL. A meshless model for transient heat conduction in functionally graded materials. Comput Mech. 2006;38:51–60.
- [31] Klekiel T, Kołodziej JA. Trefftz method for large deflection of plates with application of evolutionary algorithms. Comput Assist Methods Eng Sci. 2006;13:407–16.
- [32] Uściłowska A, Berendt A. An implementation of the method of fundamental solutions for the dynamic response of von Karman nonlinear plate model. Int J Comput Methods. 2013;10:1341005.
- [33] Mierzwiczak M, Kołodziej JA. The determination temperature-dependent thermal conductivity as inverse steady heat conduction problem. Int J Heat Mass Transf. 2011;54:790–6.
- [34] Gorzelanczyk P, Kolodziej JA. Some remarks concerning the shape of the source contour with application of the method offundamental solutions to elastic torsion of prismatic rods. Eng Anal Bound Elem. 2008;32:64–75.
- [35] Gorzelanczyk P. Method of fundamental solutions and random numbers for the torsion of bars with multiply connected cross sections. Comput Assist Mech Eng Sci. 2010;17:99–112.
- [36] Gorzelanczyk P. Method of fundamental solution and genetic algorithms for torsion of bars with multiply connected cross sections. J Theor Appl Mech. 2011;49(4):1059–78.
- [37] Kolodziej JA, Gorzelanczyk P. Application of method of fundamental solutions for elasto-plastic torsion of prismatic rods. Eng Anal Bound Elem. 2012;36:81–6.
- [38] Kolodziej JA, Jankowska MA, Mierzwiczak M. Meshless methods for the inverse problem related to the determination of elastoplastic properties from the torsional experiment. Int J Solids Struct. 2013;50:4217–25.
- [39] Gorzelanczyk P. The usage of the method of fundamental solution for twisting composite rod as a basis of the local analysis. Solid State Phenom. 2015;224:175–80.
- [40] Jankowska MA, Kolodziej JA. On the application of the method of fundamental solutions for the study of the stress state of a plate subjected to elastic-plastic deformation. Int J Solids Struct. 2015;67–68:139–50.
- [41] Uscilowska A, Fraska A. Implementation of HAM and meshless method for torsion of functionally graded orthotropic bars. J Mech Mater Struct. 2016;11(1):61–77.
- [42] Mierzwiczak M, Kolodziej JA. Comparison of three meshless methods for 2D harmonic and biharmonic problems. Eng Anal Boundary Elem. 2020;118:157–68.
- [43] Mendelson A. Plasticity: theory and application. New York: McMillan Company; 1968.
- [44] Chakrabarty J. Theory of plasticity. Oxford: Elsevier Butterworth-Heinemann; 2006.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a2435e7-c826-45df-a962-f5ea55815e9c