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Abstract: A three-dimensional problem of the theory of elasticity for halfspace with multilayered coating with periodical structure is consid-
ered. The fundamental layer consists of two layers with different thicknesses and different mechanical properties. The coating is described 
by the homogenized model with microlocal parameters. The solution is derived by using integral Fourier transform. Calculations were con-
ducted with the assumption of elliptical distribution of normal and tangential tractions applied to the surface of the layered system in a cir-
cular area. Analysis of the stresses was restricted to the first principal stress distribution.  
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1. INTRODUCTION 

In the mechanics of contact interaction, much attention is now 
given to coatings used for the improvement of the tribological 
characteristics of friction couples. Thus, the coatings formed by 
periodically deposited elastic layers are now extensively investi-
gated (Farhat et al., 1997; Voevodin et al., 2001) parallel with the 
uniform coatings (Schwarzer 2000; Bargallini et al., 2003; 
Kulchytsky-Zhyhailo and Rogowski, 2010) and nonuniform coat-
ings whose mechanical properties are described by continuous 
functions of the distance from the surface (Guler and Erdogan, 
2007; Liu et al., 2008; Kulchytsky-Zhyhailo and Bajkowski, 2010). 
In the analysis of the stressed state, the researchers, as a rule, 
focus their attention on the evaluation of the tensile and Huber–
Mises stresses described by the second invariant of the deviator 
of the stress tensor. 

Considering contact problems for multilayered coatings in 
classical approach we need to solve partial differential equations 
for every sublayer and satisfy continuity conditions on the inter-
faces. 

A coating with periodical structure can be replaced by a ho-
mogeneous one by using e.g. homogenized model with microlocal 
parameters (Matysiak and Woźniak, 1987; Woźniak, 1987). 

As it was show in earlier papers (Kołodziejczyk and Kulchyt-
sky-Zhyhailo, 2013; Kulchytsky-Zhyhailo and Kołodziejczyk, 2005; 
Kulchytsky-Zhyhailo, 2011) the stress distribution in the substitute 
homogeneous medium is a good approximation of stress distribu-
tion in the multilayered medium when the ratio of thickness 
of a fundamental layer to a specific size of contact area is less 
than 0.1. 

In the present work, we consider a three-dimensional problem 
of elastic half space with laminated coating of periodic structure 
loaded by normal and tangential tractions. 

The multilayered coating is replaced by a homogeneous one 
which mechanical properties are described by the homogenized 
model with microlocal parameters. The objective of this work is to 
determine relations between applied loading and stresses in the 
coating and in the substrate as well as analysis of tensile stresses 
and Huber-Mises stresses in the coating due to loading applied in 
a circular area on the free surface. 

 
Fig. 1. The scheme of the problem
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2. FORMULATION OF THE POBLEM  

Let us consider a non-uniform elastic half-space loaded by 

normal   and tangential    traction in the region   with the spe-
cific size   on the free surface (Fig. 1). The non-uniform half 
space is formed by the homogeneous isotropic half space with 

Young’s modulus    and Poisson’s ratio    and a system of two 
periodically deposited elastic layers with thicknesses    and    

(        is the thickness of the fundamental layer), 

Young’s moduli    and   , and Poisson’s ratios    and   , 

respectively. Assume that the conditions of perfect mechanical 
contact are realized between the layers of the coating and be-
tween the coating and the substrate. 

Since the nonhomogeneous coating is described by the ho-
mogenized model with microlocal parameters (Matysiak and 
Woźniak, 1987; Woźniak, 1987) the governing equations take the 
form: 
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where      – macro-displacements vector (displacements aver-

aged in a fundamental layer),       – dimensionless coordinates 
(Cartesian coordinates related to a specific size of contact area 

a),          ,        ,   ,               – coefficients 

calculated from known relations (Matysiak and Woźniak, 1987; 
Kaczyński, 1994; Kulchytsky-Zhyhailo, 2011; Kołodziejczyk 
and Kulchytsky-Zhyhailo, 2013) on the base of mechanical 
and geometrical properties of alternating layers: 
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Equations (1) have the same form as equations of theory 
of elasticity for a transversely isotropic solid. Therefore their solu-
tion can be expressed in terms of elastic potentials proper to a 
transversely isotropic medium (Elliot, 1949): 
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Considered boundary problem, formulated in dimensionless 
coordinates related to the specific size a of the loading area, leads 
to equations of theory of elasticity (2b) defined in the appropriate 
homogenized medium and equations 

    0 div grad)21( 00

0  uu  (3) 

defined in the substrate, with boundary conditions: 

 normal and tangential tractions on the surface, 

),(),,()1( yxpzyxzz  , ),(),,()1( yxhyx xxz   ,  (4a) 

0),,()1( hyxyz , (x,y) Ω,  (4b) 

 ideal contact between coating and substrate, 
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where u
(0)

 is the displacement vector in the substrate. 
The characteristic feature of the homogenized model is that 

it gives different expressions for calculation of the stress tensor 
components, which experience a jump on the interfaces between 
layers.  
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where       is the stress tensor in      layer of the fundamen-
tal layer (     ),   ,   ,    – coefficients calculated from 
known expressions (Kaczyński, 1994): 
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It is essential to note that discussed stresses differ significant-
ly in the individual sublayers composing a fundamental layer 
(Kulchytsky-Zhyhailo, 2011; Kulchytsky-Zhyhailo and Kołodziej-
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czyk, 2005; Kołodziejczyk and Kulchytsky-Zhyhailo, 2013). 
The remaining stress tensor components can be obtained us-

ing the following relations: 
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3. SOLUTION OF THE POBLEM  

General solution of differential equations defined in the coat-
ing and in the substrate we obtain using two-dimensional Fourier 
transform: 
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The Fourier transforms of the elastic potentials have the fol-
lowing form: 
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The solution in the substrate can be expressed as: 
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Formulas (6) and (7) contain 9 unknown functions of the trans-
form parameter. Satisfying boundary conditions we obtain two 
systems of algebraic equations to determine unknown functions. 
They contain 6 and 3 equations respectively: 
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where:     .3,2,1,sinh,cosh 11   ishsshc iiii   

Solution of these two systems of equations can be normalized 
as follows: 
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Solving obtained linear equations and taking into account rela-
tionship between displacements and stresses and elastic poten-
tials we obtain solution of the problem in Fourier transform do-
main. 
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where the form of introduced functions S depends on the location 

of the investigated point. Moreover functions with subscripts    
defined in the coating depend on the number of a sublayer 
in a fundamental layer and are given by: 
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      .3,2,1,cosh,sinh 11   izhsCzhsS iiii   

The corresponding functions in the substrate are as follows: 
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Taking the inverse Fourier integral transforms, we obtain rela-
tions (in terms of double integrals) between displacement vector 
components and stress tensor components in the coating and 
in the substrate and functions describing loading distributions.  

4. RESULTS AND DISCUSSIONS 

Calculations were made under assumptions: 

 the tangential tractions are related to the normal tractions 

by the Amontons-Coulomb law of friction:        where   

is the friction coefficient 

 the axisymmetrical pressure in the form (
 

  
)
 

         

(         ) is applied over a circular area of radius  . 

 mechanical properties of the substrate and the coating as well 
as the thickness ratio of sublayers forming fundamental layer 
were taken from the literature (Voevodin et al., 2001). Details 
are given in Tab. 1. 

Tab. 1. Mechanical and geometrical properties elements  
             of the discussed non-uniform half space 

Material E (GPa)  H1/H2 

substrate Steel 220 0.25 

4.7/1.2 
coating 

TiN 440 0.18 

Ti 120 0.32 

The integrals at internal points of the nonuniform half space 

(     ) are taken with the help of the Gaussian quadrature. 

On the surface       , we take into account the asymptotic 
behavior of the solution of the system of equations obtained 
as the parameter of the integral transformation tends to infinity. 
The integrals in which the integrands are replaced by their asymp-
totics are taken analytically. To find the remaining integrals, we 
apply the Gaussian quadrature. 

Fig. 2 illustrates distributions of the first principal stress   

in sublayers of the coating with greater Young modulus in the 
plane    . Figs. (2a) and (2b) show an interaction in case of 

normal traction. Contours of   distribution caused by tangential 
tractions are shown in Figs. (2c) and (2d). It can be seen that 
tensile stresses arise on the unloaded part of the surface of the 

half-space. The maximum value of 1 appears close to the 

point     ,    ,     and increases with increasing 
value of the friction coefficient. For specific thickness of the coat-
ing tensile stresses additionally appear in the vicinity of the coat-
ing-substrate interface. 

Fig. 3 show  distributions of the second invariant of deviatoric 

stress tensor    (    √   ) in sublayers with greater Young 

modulus. It can be distinguished two local maxima of   : (1) at the 
point     ,    ,     (2) on the coating-substrate inter-
face or in its vicinity. 

 

 

 

 
Fig. 2. Distribution of the first principal stress   in sublayers with greater 

Young modulus in regions in which         :  

         ,     ;          ,     ; c)       ,  

       ; d)       ,        . 
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Fig. 3. Distributions of the second invariant of deviatoric stress tensor    

in sublayers with greater Young modulus: a)       ,     ; 

b)       ,     ; c)       ,        ;  

d)       ,         

5. CONCLUSIONS 

Calculations show that: 

 Distribution of the first principal stress 1 in layers with greater 
Young modulus is similar to that in a homogeneous coating 
when                       (Kulchytsky-Zhyhailo and Ro-

gowski, 2007, 2010; Schwarzer, 2000). Values of tensile 
stresses (if exist) on the coating-substrate interface are lower 
than in a homogeneous coating with the same Young modu-
lus. 

 Distributions of the stress tensor components which experi-
ence a jump on the interfaces are different in layers with 
greater Young modulus from distributions in layers with small-
er Young modulus. 
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