PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of ultrasonic vibration-assisted cutting on ploughing effect in cutting Ti6Al4V

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the finite element method (FEM) is used to study the ploughing effect of ultrasonic vibration-assisted cutting Ti6Al4V. Due to the existence of the cutting edge radius of the tool, there will be a ploughing area in the cutting of Ti6Al4V. The ploughing area is an area where the stress state is very complex in the cutting process. The ploughing force and temperature of the ploughing area are important factors that affect the machined surface quality and tool wear. The main research of this paper includes the establishment of ploughing force, temperature and dynamic friction coefficient model of the ploughing area, and the correctness of the analysis model is verified by using the finite element method. Then, by changing the cutting conditions, the influence of changing the cutting parameters on the ploughing effect is discussed. The results show that the analysis model can be used to monitor the ploughing force and ploughing area temperature, and ultrasonic vibration-assisted cutting can significantly reduce the ploughing force and ploughing area temperature, reducing tool wear and plastic deformation of the machined surface.
Rocznik
Strony
55--73
Opis fizyczny
Bibliogr. 33 poz., rys., wykr.
Twórcy
autor
  • Shanghai University of Engineering Science, Shanghai, China
autor
  • Shanghai University of Engineering Science, Shanghai, China
autor
  • Shanghai University of Engineering Science, Shanghai, China
Bibliografia
  • [1] Amin AKMN, Ismail AF, Khairusshima MKN. Effectiveness of uncoated WC-Co and PCD inserts in end milling of titanium alloy-Ti-6Al-4V.J Mater Process Technol. 2007;192:147–158.
  • [2] Oezkaya E, Biermann D. Segmented and mathematical model for 3d FEM tapping simulation to predict the relative torque before tool production. Int J Mech Sci. 2017;128:695–708.
  • [3] Saoubi MR, Outeiro JC, Chandrasekaran H, et al. A review of surface integrity in machining and its impact on functionalperformance and life of machined products. Int J Sustain Manuf. 2008;1:203–36.
  • [4] Chen ZZ, Qi H, Zhao B, Zhou Y, Shi L W, Li HN, Ding WF. On the tribology and grinding performance of graphene-modified porous composite-bonded CBN wheel. Ceram Int. 2021; 47(3): 3259–3266.
  • [5] Wu X, Li L, He N, et al. Investigation on the ploughing force in micro-cutting considering the cutting edge radius. Int J Adv Manuf Technol. 2016;86:1–7.
  • [6] Wu X, Li L, He N, et al. Influence of the cutting edge radius and the material grain size on the cutting force in micro cutting. Precis Eng. 2016;45:359–64.
  • [7] Stevenson R. Measurement of parasitic forces in orthogonal cutting. Int J Adv Manuf Technol. 1998;38:113–30.
  • [8] Chen N, Li L, Wu J, et al. Research on the ploughing force in micro milling of soft-brittle crystals. Int J Mech Sci. 2019;155:315–22.
  • [9] Chen N, Li HN, Wu JM, et al. Advances in micro milling: from tool fabrication to process outcomes. Int J Mach Tools Manuf. 2021;160:103670.
  • [10] Chen N, Li ZJ, Wu Y. Investigating the ablation depth and surface roughness of laser-induced nano-ablation of CVD diamond material. Precis Eng. 2019;57:220–8.
  • [11] Zhou M, Hu L. Development of an innovative device for ultrasonic elliptical vibration cutting. Ultrasonics. 2015;60:76–81.
  • [12] Brehl DE, Dow TA. Review of vibration-assisted machining. Precis Eng. 2008;32:153–72.
  • [13] Song YC, Park CH, Moriwaki T. Mirror finishing of Co-Cr-Mo alloy using elliptical vibration cutting. Precis Eng. 2010;34:784–9.
  • [14] Patil S, Joshi S, Tewari A, et al. Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V. Ultrasonics. 2014;54:694–705.
  • [15] Saito H, Jung H, Shamoto E. Elliptical vibration cutting of hardened die steel with coated carbide tools. Precis Eng. 2016;45:44–54.
  • [16] Davim JP, Maranhao C. A study of plastic strain and plastic strain rate in machining of steel AISI 1045 using FEM analysis. Materi Design. 2009;30:160–5.
  • [17] Sun ZT, Shuang F, Ma W. Investigations of vibration cutting mechanisms of Ti6Al4V alloy. Int J Mech Sci. 2018;148:510–30.
  • [18] Yang ZC, Zhu LD, Zhang GX, Ni CB, Lin B. Review of ultrasonic vibration-assisted machining in advanced materials. Int J Mach Tools Manuf. 2020;156:1–34.
  • [19] Ni CB, Zhu LD. Investigation on machining characteristics of TC4 alloy by simultaneous application of ultrasonic vibration assisted milling (UVAM) and economical-environmental MQL technology. J Mater Process Technol. 2020;278:1–19.
  • [20] Wang J, Zuo J, Shang Z, et al. Modeling of cutting force prediction in machining high-volume SiCp/Al composites. Appl Math Model. 2019;70:1–17.
  • [21] Moufki A, Molinari A, Dudzinski D. Modelling of orthogonal cutting with a temperature dependent friction law. J Mech Phys Solids. 1998;46:2103–38.
  • [22] Bai W, Sun RL. Improved analytical prediction of chip formation in orthogonal cutting of titanium alloy Ti6Al4V. Int J Mech Sci. 2017;133:357–67.
  • [23] Nath C, Rahman M, Neo KS. Machinability study of tungsten carbide using PCD tools under ultrasonic elliptical vibration cutting. Int J Mach Tools Manuf. 2009;49:1089–95.
  • [24] Li BK, Li CH, Zhang YB, et al. Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. J Clean Prod. 2017;154:1–11.
  • [25] Gao T, Li CH, Zhang YB, et al. Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribol Int. 2019;131:51–63.
  • [26] Heilmann P, Rigney DA. An energy-based model of friction and its application to coated systems. Wear. 1981;72:195–217.
  • [27] Zhang J, Moslehy FA, Rice SL. A model for friction in quasi-steady-state sliding part I. Derivat Wear. 1991;149:1–12.
  • [28] Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech. 1985;21:31–48.
  • [29] Ducobu F, Rivière-Lorphèvre E, Filippi E. On the importance of the choice of the parameters of the Johnson–Cook constitutive model and their influence on the results of a Ti6Al4V orthogonal cutting model. Int J Mech Sci. 2017;122:143–55.
  • [30] Liu K, Melkote SN. Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process. Int J Mech Sci. 2007;49:650–60.
  • [31] Lee WS, Lin CF. High-temperature deformation behaviour of Ti6A14V alloy evaluated by high strain-rate compression tests. J Mater Process Technol. 1998;75:127–36.
  • [32] Liang X, Liu Z, Wang B, et al. Modeling of plastic deformation induced by thermo-mechanical stresses considering tool flank wear in high-speed machining Ti-6Al-4V. Int J Mech Sci. 2018;140:1–12.
  • [33] Tan R, et al. Sustainable production of dry-ultra-precision machining of Ti6Al4V alloy using PCD tool under ultrasonic elliptical vibration-assisted cutting. J Clean Prod. 2020;248:119254.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a1f4f5a-941a-4150-b27b-b8ae761245d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.