Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Autoencoder, an hourly glass-shaped deep neural network capable of learning data representation in a lower dimension, has performed well in various applications. However, developing a high-quality AE system for a specific task heavily relies on human expertise, limiting its widespread application. On the other hand, there has been a gradual increase in automated machine learning for developing deep learning systems without human intervention. However, there is a shortage of automatically designing particular deep neural networks such as AE. This study presents the NiaNet method and corresponding software framework for designing AE topology and hyper-parameter settings. Our findings show that it is possible to discover the optimal AE architecture for a specific dataset without the requirement for human expert assistance. The future potential of the proposed method is also discussed in this paper.
Słowa kluczowe
Rocznik
Tom
Strony
109--116
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
Bibliografia
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a1e5716-1991-432e-b5c5-dcea336682be